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Abstract

The goal of this master thesis was to identify an alternative to shaft encoders as
means of achieving accurate motor velocity and position control for sliding door
systems. While the company had previously explored methods like using back-
EMF, this thesis investigates counting voltage ripples during the commutation
process in a brushed DC motor. During commutation, one or two pairs of commuta-
tor segments contact the brushes simultaneously, periodically changing the motor’s
impedance. With a constant current, this creates a ripple observable on the voltage.

Through a series of experiments, it was possible to produce a clear ripple signal
originating from the commutator commutation. This was done even though high
frequency switching of the internal H-bridge used for motor control was utilized. By
employing a series of filters and amplifiers, coupled with Arduino microcontrollers,
noise could be removed and the wanted signal amplified. The signal was then used
to produce a square wave representing the commutation ripple. This square wave
could then be read by an Arduino using an interrupt pin.

For the software solutions, a moving average, a finite state machine (FSM), and
a solution to remove multiple readings of a single ripples were used. These software
solutions was used in combination with the circuitry to further increase the accuracy
of the detection and counting of voltage ripple.

The resulting solution provided mostly correct velocity estimations as compared
to the onboard encoder. The difference being the lower resolution and some diffi-
culties in recording all ripples. The performance was adequate at low to medium
velocities, but started to deviate at higher velocities as a result of, amongst other
factors, inadequate sampling rates. Another problem that was observed was the
loss of observable ripples during deceleration. This was theorized to be caused by
the way the signal was sampled from the H-bridge, whereas a differential reading
across the bridge might render better results.

This report shows that voltage ripples can track velocity and position. While the
current solution is insufficient for ripple-based motor control, future research based
on the produced findings might enable its implementation in the future.
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1
Introduction

In this chapter the subject of the thesis is described. The background and prob-
lem description are also presented along with a clearly formulated objective of the
thesis.

1.1 Background

When designing sliding door entrance systems for pedestrian use, the safety of the
user is of great importance. The system has to be able to respond quickly to changes
in its environment and be able to precisely control the acceleration, velocity and
position of the door leaves. The need for precision control necessitates the use of
sensors and techniques that are able to accurately relay safety-critical information.
Such systems ensures smooth operation and predictable behavior. The cost of these
systems, however, are often not negligible, and it is in the interest of the producers
to try to minimize this cost without adversely affecting the safety of the product.

This thesis is being conducted in close cooperation with ASSA ABLOY En-
trance Systems in Landskrona. The pedestrian sliding doors designed by ASSA
ABLOY utilizes industry-standard brushed DC motors to drive the door leaves via
a belt drive. Mounted on the motor shaft are encoders with significant resolution.
These encoders are not cheap, and ASSA ABLOY is therefore interested in explor-
ing alternative means of position tracking that would allow them to lower the overall
cost of the system.

1.2 Problem description

• Is it possible to implement an adequate control system for a sliding door en-
trance system without using an encoder?

• How are accurate measurements of the doors position and velocity to be
made?

1



Chapter 1. Introduction

• How are these above points to be implemented by using the existing brushed
DC motor?

1.3 Objective

The goal of this thesis is to explore an alternative method to shaft encoders for po-
sition control of sliding door systems. By researching other techniques for position
control of brushed DC motors, the aim is to try to implement one such technique on
an existing sliding door system at ASSA ABLOY Entrance Systems in Landskrona.
During the time frame of the project, it is not necessary for the alternative posi-
tioning solution to be used to control the door system. Instead, the objective is to
demonstrate that the solution can be integrated into the control system with relative
ease. The solution should also be cost effective, so as to be able to compete with
existing encoder solutions.

1.4 Division of labour

The project’s division of labour can be seen as equal overall, with both participants
contributing in developing both software and hardware. Additionally, both partici-
pants equally contributed to the research, documentation, and to the report.

2



2
Theory

The following chapter aims to give a comprehensive overview of the theory, hard-
ware and software that form the basis of this project. The theory presented here will
later be used throughout the experimental work.

2.1 The brushed DC motor

The motor of interest in this thesis is a permanent-magnet brushed DC motor. Such
brushed DC motors have become popular in applications where efficient space
utilization is required and where low torques are acceptable [1]. The brushed DC
motors utilized in ASSA ABLOY sliding doors are coupled with gearboxes that
enable greater output torque at low velocities by allowing the motor to operate at
higher velocity.

i

i

i

2

i

2

+

−

ω

Figure 2.1 A simplified overview of the general permanent-magnet brushed DC motor.
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Chapter 2. Theory

The general brushed DC motor, illustrated schematically in Figure 2.1, utilizes
a fixed magnetic field from two permanent magnets on either side of the stator. This
magnetic field interacts with the rotor which has copper coils carrying DC current.
The ends of the coils are connected to commutator segments on the commutator.
As the motor rotates, the brushes periodically contacts new pairs of commutator
segments, creating an alternating magnetic field through the coils. This produces a
continuous torque towards the permanent magnets, driving the motor [2].

As discussed in the literature related to the course in power electronics at LTH
[3], the equation of the armature voltage and the associated motor torque can be
given as:

ua = Ra · ia +La ·
dia
dt

+ωr ·Ψm (2.1)

T = Ψa · ia (2.2)

Where Ra is the armature resistance, ia is the armature current, La is the arma-
ture inductance, ωr is the angular velocity of the rotor given in rad/s and Ψm is the
magnetic flux of the permanent magnets.

2.2 Encoders

When it comes to position and velocity tracking, shaft encoders are a common
solution in many applications. By converting angular rotation to a set number of
digital pulses they provide an easy means of position tracking. The encoders com-
monly used in ASSA ABLOY sliding doors are so called incremental encoders.
This means that they respond to change, but do not keep track of the absolute value
of pulses. The incremental encoders used are also bi-directional in the sense that
the direction of rotation can be deduced from the digital signals.

In general this is achieved by utilizing a mechanical or electrical transducer
that continuously reads a pattern on a moving object, in this case a disk. Most
incremental rotary encoders use optical light and a transparent disk with black sec-
tions to detect these movements. The light-emitting diode beneath the disk shines
through, and a photo-detector captures the light, generating electrical pulses as the
disk rotates. The system counts these pulses and tracks the shaft position by divid-
ing the number of counted pulses by the known quantity of pulses to calculate the
position and the total number of revolutions. For applications requiring detection
of direction, a more sophisticated solution is used with a two-channel setup. The
two channels are phased 90 degrees apart from each other, allowing the system to

4



2.3 Previous work

determine the rotational direction by analyzing their phase relationship [4].

The main reason behind the choice of utilizing this kind of encoder has to do
with the fact that it is an extremely well tested and robust technique. This is es-
pecially important in safety critical applications such as sliding doors meant for
pedestrian use. A benefit of encoders is the high precision that can be achieved
based on the given resolution. For example, it is not uncommon today to see en-
coders that yield 500 pulses of data per rotation. This accuracy and simplicity helps
motivate the general usage of encoders in motion control systems. To emphasise, an
incremental encoder with 500 pulses/rotation could, given a door opening width of
only 2 meters, produce over 50 thousand pulses.

2.2.1 Disadvantages
The use of encoders is not without disadvantages. One of the problems is the general
size of the sensor. It often makes up a significant percentage of the total motor
length if mounted on the motor axle. In applications constrained by limited space,
this becomes especially critical. Another problem of using encoders is the general
cost of the device. This is closely related to the resolution of the encoder, with more
high resolution devices costing more. In the context of sliding doors, the cost of
the encoder is the driving factor of limiting encoder use or attempts at lowering the
resolution of the device.

2.3 Previous work

Previous work has been conducted at ASSA ABLOY in exploring alternative meth-
ods of position tracking. In particular methods of utilizing back-EMF has been
made with decent results regarding velocity tracking. The problem with utilizing
this approach for position tracking as well is that it is prone to drift, and that achiev-
ing sufficient position estimation requires an accurate mathematical motor model.

Implementing such a motor model is not easy, however. This is because of the
fact that such a model would be dependant on motor constants such as resistance,
inductance and the back-EMF constant. These parameters are not constant but in-
stead vary during operation. This is in part due to heat generated in the motor. As
such, even though the motor velocity can still be estimated dynamically, it will lead
to a complicated non-linear model [5].

Even if a decent velocity estimation could be achieved with a sufficient non-
linear model, drift will always be an issue when constructing a position estimation
from a given velocity curve. This has to do with the fact that the position is achieved
by integrating the velocity v (Equation 2.3) over time, and any deviation in the
estimated velocity will lead to an increasing error term. This is usually fine for
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Chapter 2. Theory

velocity tracking as no consideration has to be made towards the growth of this term,
but when it comes to position tracking, not knowing the value of this error term will
result in drift in the resulting position value. This is shown in the simplified formula
below, where the position x(t) is the sum of the initial position x0, the integral of the
velocity estimation vest over time and the integral of the error over time.

x(t) = x0 +

t∫︂
0

vest(t) dt +
t∫︂

0

(vtrue(t)− vest(t)) dt (2.3)

2.4 Alternative control techniques

In general, sensorless velocity measurement methods for DC motors fall into two
divisions. Either they are model based, or they are ripple based. The model based
techniques are associated with a high degree of uncertainty given real world condi-
tions, whilst ripple based techniques measures rotor velocity based upon a periodic
phenomenon [6]. In this section, a model based approach based upon measurement
of the back-EMF as well as ripple based techniques are presented.

2.4.1 Back-EMF
The phenomenon of back-EMF can be used to estimate the velocity of DC motors.
As the motor rotates, the coils move through the magnetic field of the permanent
magnets, which results in a generated voltage. This induced voltage, or electromo-
tive force, opposes the voltage that is applied to drive the motor. Thus it is called
back-EMF.

The faster the motor rotates within the magnetic field created by the permanent
magnets in the DC motor, the more back-EMF is induced. This is caused by the fact
that the relationship between the back-EMF and the rotational velocity of the motor
is directly proportional. Furthermore, if an ideal DC motor with zero resistance and
inductance as well as with constant RPM experiences no load, the back-EMF equals
the terminal voltage [7].

6



2.4 Alternative control techniques

2.4.2 Current ripples
As opposed to model based approaches based upon, for example back-EMF, ripple
based velocity and position estimation relies upon periodic pulses in the supplied
current or voltage that are produced as the result of two commutator segment pairs
undergoing commutation simultaneously. This "ripple" is directly proportional to
the number of commutator segments and to the velocity of the motor. Given such
a ripple, the rotational velocity of the motor in rpm can be calculated using Equa-
tion 2.4 below, where fr is the observed ripple frequency in Hz and Ncs is the number
of commutator segments [5].

nrot =
fr ∗60
Ncs

(2.4)

If a general brushed DC motor, such as the one illustrated in Figure 2.1, is anal-
ysed, current ripples can be found by applying a constant voltage across the motor,
and by extension across the brushes. Since the contact point between brushes and
commutator segments will be in constant motion relative to the motor axle there
will be two possible cases of contact. Either the brushes make contact with just one
commutator segment pair or, if the brushes are in the process of switching from one
pair of segments to another, two pairs can undergo commutation at the same time.
This momentarily changes the total impedance across the motor and gives rise to a
periodical pulsation in the supply current. This shift can be observed as the sought
after ripple component across the main DC current [6].

The commutation process that corresponds to the the creation of current ripples
is illustrated in Figure 2.2 below. In the simplified figure, the motor is made up of an
armature with winding and commutator, whereas the commutator has 6 segments
and one permanent magnet pole pair. Starting with the model to the left, the brushes
makes contact with a single pair of commutator segments. This means the each
branch of coils is comprised of three coils each through which current flows. As
the rotor continues to move in relation to the stator, the brushes reconnect with the
next pair of commutator segments. They do this whilst still being in contact with
the previous pair. This is illustrated in the figure to the right. When contact is made
with two pairs of commutator segments, the two commutator segments on the same
connection side are connected, resulting current flowing through the coils between
these two pairs. As a results, each branch of coils will now only comprise of two
coils, which means that the total impedance of the motor is lowered momentarily.
Since the voltage is kept constant whilst the impedance is lowered, the current will
rise. However, since the armature is rotating and the voltage is induced in the coils,
the example of impedances is given just to provide a simpler introduction to the
topic.

7
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Figure 2.2 When the brushes connect two pairs of commutator segments simultaneously,
the impedance of each branch of coils is reduced.

Because of the behavior described above, each coil goes through three stages.
First the current flows through the coil towards the opposing brush. Once the coil
is disconnected from the neighbouring commutator segment the flow of current
suddenly stops, only for the initial current direction to be reversed once the neigh-
bouring commutator segment releases from the brush. These changes, shown later
in Figure 3.2, in the current flow gives rise to an inductive behavior which expresses
itself as an AC ripple component super-positioned on the larger DC current [8].
However, it should be noted that this explanation is simplified and does not fully
capture all the complex interactions in the DC motor.

2.5 Signal handling

When dealing with signal handling, both passive and active filters are valuable tools.
This results from the fact that the general measurement signal is a super-position
of a large spectrum of frequencies. Some of which are desired and others that are
noise. By utilizing filters it is possible to remove frequencies that are undesirable.
For example, a low-pass filter will attenuate any frequencies above a certain cutoff
frequency, whereas a high pass filter will attenuate any signals under a chosen cutoff
frequency.

By also utilizing operational amplifiers in the filter design, so called active
filters can be achieved. One large benefit of such a design is the possibility of
achieving output gain that surpasses unity, i.e amplified signals. This is in sharp
contrast to simple RC filters, where gain will always be under 1. Another useful
implementation of operational amplifiers in a filter circuit is that they can be used

8



2.5 Signal handling

as a high impedance step in the circuit which does not load the source. This is espe-
cially important if the source signal needs to remain unaltered by the implemented
measurement circuit.

By combining different filter circuits it is possible to format the measured signal
to an appropriate output. This is important if the source signal voltage and current is
too high to be fed in to an analog-to-digital converter of a microcontroller directly.
In the following subsections, an overview of the filtering techniques of interest for
this thesis will be presented.

2.5.1 The RC low-pass filter
The RC low-pass filter is a filter made up of passive components. As the name
suggests, they are resistors (R) and capacitors (C). As discussed in an application
from Texas Instruments [9], most filters that operate at frequencies higher than 1
MHz usually also consist of an additional inductor. However, at lower frequencies,
i.e 1 Hz - 1 Mhz, the inductor value needs to be exceedingly large, making the
components too bulky for most applications.

For this discussed reason, combined with the fact that only relatively low fre-
quencies under 1 kHz are of interest for the applications of this thesis work, the
focus will stay on filters that do not utilize inductors. One common filter design that
fulfills this criteria is the simple RC filter.

As stated in an article relating to RC filter design published on EEPower [10],
the general first order RC filter circuit and its frequency response can be modeled
as follows:

Uin UoutC

R
fc

−3dB
0dB

Gain (dB)

Normalised frequency

1 1000.010.0001

−20dB/Decade

0dB
−3dB

Passband

Figure 2.3 A first order RC filter with a corresponding normalized Bode plot.

The cut-off frequency can then be derived from the following formula:

fc =
1

2πRC
(2.5)

The simplicity of the RC filter makes it both cheap and reliable. Furthermore,
in order to achieve a steeper attenuation of frequencies higher than the cut-off fre-
quency, the design can easily be cascaded as discussed in an article by Electronics

9



Chapter 2. Theory

Tutorials [11]. This is done by connecting two first-order filters in series, whereupon
a second-order filter is formed. The result is a steeper cut of ratio with the following
relationship:

k = N ∗ (−20 dB/Decade) (2.6)

where k is the attenuation slope, N is the number of cascaded first-order filters and
-20 dB/Decade is the attenuation slope of a single first-order filter.

2.5.2 The active low-pass filter
Since LRC circuits are, as discussed above, unsuitable for the given application
of this thesis, active low-pass filters provide additional advantage aside from their
amplificational effects. They also provide a means of achieving behavior close to
that of LRC circuits for low frequencies.

2.5.3 The Sallen-Key low-pass filter
The second-order Sallen-Key low-pass filter is a relatively easy active filter design
to implement. A useful characteristic is that it provides high input impedance and
low output impedance. Furthermore, it can easily be cascaded to increase higher
order filtering characteristics [12].

R1 R2

C2

C1

Uin

Uout

+

−

5V

Figure 2.4 The second-order Sallen-Key low-pass filter configured with unity gain.

The fact that the Sallen-Key filter is a popular and easily adjustable filter design
means that there is a multitude of design guides available. An example of such is
an application from Texas instruments [13] that walks through the design consider-
ations that have to be made when constructing such a filter.

2.5.4 Comparator circuit with hysteresis
An operational amplifier connected as a comparator differentiates between two in-
put signals at the inverting and non-inverting input terminals of the amplifier. It will
then drive the output to the positive or negative supply voltage, based upon which
input is the largest. This is done by essentially amplifying the difference to such an

10



2.5 Signal handling

extent that any difference between the terminals will lead to a voltage either close
to the positive or the negative supply [14].

A common problem with such a on-off comparator is related to noise in the in-
put signals. This is discussed in another application from Texas instruments [15],
where it is clear that a noisy signal will lead to additional transitions when the two
signals are close to each other. One way to minimize this behavior is by introduc-
ing a feedback resistor between the output and the input channel, thus creating a
hysteresis. By adjusting the values of the resistors, the span of the hysteresis can be
altered as given by Equation 2.7 taken from the lecture notes in the basic course in
electrical engineering, EEIF35, given at LTH [16].

R1

Uin

Uout

R2

Uref

+

−

5V

Figure 2.5 A general non-inverting comparator circuit with hysteresis.

Uin −U+

R1
=

U+−Uout

R2
=⇒U+ =

UinR2 +UoutR1

R1 +R2
(2.7)

2.5.5 Differential amplifier
As discussed in chapter 6 of Principles and Applications of Electrical Engineering
[1], the differential amplifier is another useful implementation of an operational am-
plifier. Its main purpose is to take the difference between two input voltage signals
and output this difference. This means it responds only to the differences between
the two inputs, rejecting any voltage common to both. This can be seen in Equa-
tion 2.8.
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Chapter 2. Theory

R1

Uin

Uout
+

−

Rf

R3

R2

Uref

5V

Figure 2.6 The differential amplifier circuit.

R f

R1
=

R2

R3
=⇒ Uout =

R f

R1
(Uref −Uin) (2.8)

2.6 Current-Control

When it comes to electrical components such as motors, the quantity that is primar-
ily controlled is typically the motor torque, with current serving as an intermediate
target. In applications where the mains-grid is connected to power electronic ap-
plications via a converter, the converter’s purpose becomes injecting or controlling
currents. For this reason, current is the focus of most control algorithms. Addi-
tionally, for other applications including battery charging and lighting, the primary
variable that is regulated is typically the current [3].

A common way to control motor torque through current control is by using
an H-bridge. These circuits manage constant current or motor movement. By con-
trolling the current flow, H-bridges ensure that motors operate smoothly, which is
important for applications that require precision and reliability.

2.6.1 The H-bridge
The H-Bridge is a circuit which allows a current to flow in two directions. It is often
used in motor circuits to enable bi-directional operation. The simplest circuit for
the H-bridge is using 4 transistors, as illustrated in Figure 2.7. While Q1 and Q3
are open at the same time as Q2 and Q4 remains closed, a current flows through
the motor forcing it to rotate in one direction. If, instead, Q2 and Q4 are opened
whilst Q1 and Q3 are closed, the current will flow in the reverse direction through
the motor, making it rotate in the opposite direction.

It’s crucial to ensure that only one pair of diagonal transistors are open at any
given time to prevent short circuits. This is the main purpose of utilizing the H-

12



2.6 Current-Control

bridge topology. In general, the transistors used are MOSFETs which offers good
reliability as well as power efficiency [17].

Figure 2.7 also illustrated nodes "a" and "b", which marks the points of inter-
est when sampling the voltage "u" across the motor. Furthermore, the switching
frequency of the transistors is several tens of kHz, meaning any effect caused by
such switching should be negligible in the scope of the ripple frequencies that are
of interest in this thesis, which are under 1 kHz.

MUs

+ −
u

Q1

Q2

Q4

Q3

a b

Figure 2.7 A typical H-bridge with four quadrant setup.
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Chapter 2. Theory

2.7 Arduino MKR Zero

Arduino MKR Zero is a development board created by the company Arduino. It uses
the Arm® Cortex®-M0 32 bit SAMD21 processor with dedicated SPI interface for
communication with external devices and the built-in micro SD card. In Table 2.1,
an overview of the technical specifications for the Arduino MKR ZERO is provided.
This includes the clock speed, maximum input voltage, pins and more [18].

Table 2.1 Technical Specifications for the MKR ZERO [Arduino.cc., 2024][18].

Category Details

Pins

Built-in LED pins 32
Digital I/O pins 8
Analog input pins 7 (ADC 8/10/12 bit)
Analog output pins 1 (DAC 10 bit)
PWM pins 13 (0-8, 10, 12, A3, A4)
External interrupts 10 (0, 1, 4, 5, 6, 7, 8, 9, A1, A2)

Clock Speed

Processor 48 MHz
RTC 32.768 kHz

Memory

SAMD21G18A 256 kB Flash, 32 kB SRAM

Power

I/O voltage 3.3 V
Input voltage (nominal) 5-5.5 V
DC current per I/O pin 7 mA
Supported battery Li-Po single cell, 3.7 V, 700 mAh minimum
Battery connector JST PH

2.7.1 Analog pins
As can been seen in Table 2.1, there are 7 analog pins (A0-A6) which can receive
analog input voltages. These are converted to a digital value which depends upon
the analog bit resolution. One of these input pins can, however, also be configured
as an analog output pin which utilizes an onboard digital-to-analog converter, or
DAC. As can be seen in the schematic of the pinout shown in Figure 2.8, pin A0 is
the digital pin with DAC capabilities. Furthermore, as can be seen in Table 2.1, all
input and output voltages received or produced on all pins need to be in the range
of 0 to 3.3 V. The only exception being pin VIn which uses a positive 5 volt supply.

14



2.7
A

rduino
M

K
R

Zero

Figure 2.8 An overview of the Arduino MKR Zero pin layout [18].
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Analog-to-Digital Converters. As described in the datasheet of the SAMD micro-
controller [19] (pages 780-815), these devices include a built-in analog-to-digital
converter (ADC) capable of converting analog signals into digital values. The ADC
offers a selectable bit resolution ranging from 8 to 12 bits. This resolution is deter-
mined by the setting of the result-resolution bit in the Control B register. The ADC
is capable of sampling at speeds of up to 350 kS/s at ideal conditions. However,
depending on the resolution of the conversion, this speed can vary with the slowest
conversion speed produced with a 12 bit resolution. The conversion starts with first
selecting a clock which the ADC should be run on. Then, preferences such as bit
resolution, averaging, oversampling, hardware gain, offset compensation, and more
are configured. Once this has been done the clock needs to be enabled using the
ADC clock register where after it has to wait for synchronisation between clocks
to finish. The synchronisation is important due to inherent asynchronicity between
the main clock domain and the peripheral clock domains which have to be aligned.
When this is done the SAMD is ready to read an analog value when called upon.

To read an analog value using the Arduino, a similar principle is used. The Ar-
duino library provides a function called analogRead() using the principle described
above. Before reading values using the analogRead(), the bit resolution needs to be
set using the function analogReadResolution(), which is used for setting the resolu-
tion for the Control B register. Thus determining how finely the ADC can represent
an analog voltage. By default the resolution is set to 10 bits but it can be changed
with a function call. Before initiating any readings using analogRead(), it’s essen-
tial to enable the ADC clock using the control A register, which starts when it is
set to one. After enabling the clock, data conversion can be initiated by setting the
software trigger register to one as well. The ADC is now fully operational and able
to find the digital value corresponding to the analog input. To read an analog value,
a while-loop is used to wait until the ready flag is triggered. Once the ready flag
is set the value from the result-register is stored the control A register enable is set
back to zero, turning off the clock. The digital value corresponding to the analog
input is then returned by the end of the analogRead()-function after being mapped
to the current bit resolution. It is also worth mentioning that the analog value of the
Arduino is only able to read positive analog values [20].
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Digital-to-Analog Converters. One of the features of the SAMD microcontroller
is its built-in digital-to-analog converter (DAC) which can convert digital signals to
analog values, which is described in the SAMD datasheet [19] (pages 843-848). As
mentioned before there is one pin with DAC capabilities on the Arduino, pin A0,
referenced in the SAMD datasheet as PA02. Contrary to the ADC, the resolution is
set to a fixed value of 10 bits and cannot be changed. The setup process is similar to
that of the ADC with configuring of options such as DMA, multiple trigger sources
and more. To use the DAC, a generic clock needs to be selected, configured, and
enabled. After synchronization with the main clock is completed, the data stored in
the DATA register can be converted to a voltage according to the formula 2.9, where
0x3FF corresponds to 10 bit hexadecimal and the Ure f can be chosen by writing
to the reference selection bits in the Control B register. After loading the data, the
DAC can start the conversion process either automatically when the data is loaded
or by a START event from the DATABUF register.

Uin/out =
DATA

0x3FF (Resolution)
·Uref (2.9)

To write an analog value from the Arduino, the Arduino library provides the
function anlogwrite(). This function operates differently depending on the pin to
which the value should be produced on. If the output is on pin A0, it generates a
true DAC (digital-to-analog converters) signal from the SAMD microcontroller. For
other pins, the output is in the form of a PWM (Pulse-width modulation) signal. The
process for generating a DAC signal starts with the analogWrite() first checking the
state of pin A0 to determine whether it is configured as an output or input. It then
maps the parameter value passed to the function towards a 10 bit resolution. Shortly
after, the DAC clock is enabled, and the conversion process starts automatically
after verifying that the value is a 10 bit integer and that it has been added to the data
register. If no other writing resolution is set for the Arduino MKR Zero, it defaults
to an 8 bit output, which is then converted to the standard 10 bit resolution for the
SAMD microcontroller [20].

2.7.2 Digital pins and HIGH|LOW
As shown in Figure 2.8, almost all the pins on an Arduino can be configured as
digital pins, offering the flexibility to be used either as input or output for digital
signal handling.

If the pins are configured as input pins they have minimal impact on the circuit
they are connected to, this is due to their high input impedance of around 1 MΩ.
As a result of this, it takes very little current to change the state of the pin. This
can lead to problems if nothing is connected to them where, due to electrical noise
from the environment, the pin state can exhibit seemingly random changes. When
configured as an output pin it is considered to be in a low-impedance state, meaning
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that it provides a relatively high amount of current to other circuits of up to 40 mA.
This allows it to power circuits that require slightly higher current [21].

The digitalRead() function in the Arduino library is used to check the voltage
at a specified input pin and returning its current state. For the Arduino MKR Zero
models, this means that it returns HIGH (true) if the voltage is above 2 V, and
LOW (false) if the voltage is below approximately 1 V. This function provides an
immediate reading of the pins current state, reflecting the current voltage at the input
of the digital pin. When a pin is configured as an output, a HIGH state corresponds
to a voltage of 3.3 V and a LOW state to approximately 0 V [22].

2.7.3 Interrupt pins and ISR routine
As previously stated in Table 2.1, the Arduino supports attaching external interrupts
or ISR routines to 10 different pins. The purpose of an ISR routine is to pause the
main routine, handle an external event, and then return to the main routine exactly
where it was interrupted. These ISR routines or interrupts can be triggered by mul-
tiple different circumstances, such as a voltage change on a pin or a timer overflow.
When the ISR is triggered, it is important that it is handled quickly, because lengthy
interrupts can affect the code and other important routines for the microcontroller.
If the code contains multiple ISR routines and they are triggered simultaneously,
the interruptions are queued until the routine with the highest priority finishes. Due
to the possibility that ISR routines could change the values of variables at unwanted
times, potentially causing concurrency issues, variables shared between ISR func-
tions and normal functions should be declared volatile. This ensures the compiler
reloads the variable whenever it is referenced in the code. It is also important to
protect certain parts of the code that are critical and should not be interrupted by
the ISR routine. This can be done by disabling interrupts before the critical part and
enabling them right after [23].

Interrupts in Arduino are enabled by first defining an ISR routine function,
which can be triggered by a defined event. This function should not have any
parameters or return values, unlike other functions. To attach the newly defined
ISR routine to an event, the Arduino library provides the attachInterrupt() func-
tion, which requires the cause of the trigger (such as a clock or a pin), a function
to handle the interrupt (the ISR routine), and the condition that triggers it, like a
change in voltage at the specified pin. The priority of the ISR is connected to the
pin number; for example, pin 0 has a higher priority than pin 3 and will inter-
rupt the other if triggered. To protect against this, you can disable interrupts with
either noInterrupts() or cli(), and re-enable them with either interrupts() or sei() [23].
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2.8 Software methods

2.8.1 Simple moving average and weighted mean
As described in chapter 15 of "The Scientist and Engineer’s Guide to Digital Signal
Processing" [24], the software solution called a rolling mean, also known as the sim-
ple moving average (SMA), is a highly effective method for filtering digital signals
from noise. Thanks to the simplicity of the algorithm the SMA can easily remove
noise while retaining a sharp step response. This simplicity makes it especially suit-
able for computer applications, where the SMA can be executed with impressive
speed when implemented correctly. The formula for the simple moving average is
presented in Equation 2.10. Here, x is the input signal, y is the output signal, and M
is the number of points used in the moving average.

y[i] =
1
M

M−1

∑
j=0

x[i+ j] (2.10)

Unlike the simple moving average, the statistical method of the weighted mean
focuses on assigning different weights to specific values in a data collection, rather
than treating every value with equal importance. In Equation 2.11 you can see that
the sample value xi is delegated a weight wi. After combining all the samples with
their respective weights, the total value is divided by the sum of the weights [25].

y =
∑

n
i=1 xiwi

∑
n
i=1 wi

(2.11)

2.8.2 Circular buffer
As mentioned in chapter 28 in the book "The Scientist and Engineer’s Guide to
Digital Signal Processing" [24], a huge problem with digital signal processors is
the handling of the real-time problems that comes with it. Ideally the output signal
should be produced at the same time as the input signal is received, but this is
of course impossible. Real-time applications must instead receive a sample from
the environment, perform an algorithm or process, and output the processed result,
over-and-over which creates a delay between the output and input signal. However,
by working to reduce the delay that results during signal processing the less likely
it is to affect the whole process. Oftentimes real-time applications need to rely on
both the current and previous samples in order to determine an appropriate output.
Doing this facilitates the need of a method that continually updates the memory as
new data is acquired. One such solution that offers fast performance is the circular
buffer.

The circular buffer works as illustrated in Figure 2.9. The first vector contains
8 samples, where x[n] represents the newest value and x[n-7] represents the oldest.
The other vector symbolizes what happens when a new sample is received. As seen
in the figure, the oldest value from the previous vector, x[n-7], is replaced with
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the newest sample, x[n], and all references move one step ahead, connecting the
end of the linear array to its beginning. In short, the circular buffer replaces the
oldest sample value in the linear array, and the pointer moves one address ahead,
connecting everything in a circular pattern.

Figure 2.9 A circular buffer [24].

2.8.3 State based programming
A state machine is a model of a system with discrete dynamics, producing outputs
in response to specific inputs based on its current state. The finite-state machine
(FSM) is a type of state machine with a finite number of states as its name suggest.
An FSM begins at an initial state and transitions between states based on conditions
known as guards. These guards are boolean-valued expressions that must be true
for a transition to be enabled, thereby changing the state from its initial point to its
endpoint. It is possible for a transition to start and end in the same state, and dur-
ing a transition, outputs or actions may be generated [26]. To visualize the already
described FSM look at Figure 2.10

Figure 2.10 The general structure of a finite state machine [26].
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3
Experimental work

In this chapter the experimental work of the thesis is presented. By examining and
breaking down the task in to smaller sub-problems the work could be carried out
incrementally and be divided upon multiple experiment steps.

3.1 Step 1: Current ripples on an ideal setup

The first step in the process was to confirm that current ripples could be detected on
a brushed DC motor. This process is explained in the following sub-chapters.

3.1.1 Step 1: Method
As discussed in chapter subsection 2.4.2, current ripples as a phenomenon are the
products of the mechanical switching between commutator segments and brushes in
brushed DC motors. In order to confirm the presence of such ripples upon a generic
DC motor used in many ASSA ABLOY sliding door applications, an ideal test setup
was created. By mounting two motors together with each other by coupling their
axis together, one motor could be powered by a stable power supply that produces
a constant voltage whilst the other one acted as load. The motor specifications are
listed in the table below:

Table 3.1 Motor Specifications: Nominal speed (Nn), Nominal voltage (Un) and Nominal
current (In).

Unit Value

Nominal speed (Nn) 3250 rpm
Nominal voltage (Un) 32 V
Nominal current (In) 3.6 A

In order to detect ripples an ammeter was placed in series with the voltage
source. The setup is visualized in the diagram below:
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Figure 3.1 The ideal test setup used to detect current ripples.

3.1.2 Step 1: Result
The oscilloscope reading following the experiment described in section 3.1 is pre-
sented in Figure 3.2 below. The experiment was only conducted at a single velocity
as well as with constant load. The reading was, in turn, produced at a constant volt-
age of 4.8 V, generating a ripple frequency of f1 = 65 Hz. Furthermore, the motor
shaft could be visually observed to be operating at about fr = 5.4 Hz , or 324 rpm.
This is in line with the expected and generated results, as the expected frequency can
be found by multiplying the number of commutator segments of the motor with the
shaft velocity in Hz as follows, shown in Equation 3.1 derived from Equation 2.4:

f = fr ·Nc = 5.4 ·12 = 65 Hz (3.1)

As can further be seen in the figure, a Fast Fourier Transform (FFT) is super-
imposed in the window with a centering frequency of 65 Hz, showing that the gen-
erated results agree with the expected results. The ripple velocity can also be cal-
culated straight from visual examination of the oscilloscope window, given that it
spans 100 ms. Thus, the observed 6.5 ripples can then be divided by 0.1 to yield
the resulting ripple frequency. It is worth mentioning that the current was sampled
using external current sensing hardware, and that the signal is reproduced as a volt-
age that is fed to an oscilloscope. Because of this reason the exact amplitude of the
current ripples is hard to ascertain. However, these findings still prove that current
ripples can be observed using an ideal setup.
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Figure 3.2 The oscilloscope readings produced at 4.8 V and 1 A.

3.2 Step 2: Finding voltage ripples

Given that the existence of current ripples have been proven, the work could move
on to examining the possibility of adapting the phenomenon in a format that works
for ASSA ABLOY applications.

3.2.1 Step 2: Method
It is discussed in subsection 2.4.2 that current ripples occur in brushed DC motors
under the assumption that the voltage is constant. However, the ASSA ABLOY slid-
ing door systems utilizes current control techniques for motor control. This means
that any low frequency current ripples are likely to be suppressed by the high fre-
quency current control loop.

However, since current ripples can be observed if the assumption that a contin-
uous voltage is supplied across the motor holds true, the same kind of ripple should
be detectable upon the voltage if the current is set to be constant instead. To visu-
alize this, consider Ohms Law. In the previous experiment the voltage U was kept
constant while the impedance Z changed during the commutation process resulting
in the commutation current ripples. If, instead, the current I is kept constant, the
ripples will be forced to express themselves upon the voltage instead.

I =
E
Z

⇐⇒ E = IZ (3.2)

If the assumption that the current control loop is fast enough to suppress the
current ripples holds true, the motor should in practice experience a constant current
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for any constant rotational velocity. Additionally, the assumption can be accepted
if the induced voltage is assumed to be constant, as it was not measured or an-
alyzed in this test setup. However, to truly identify the induced voltage behavior
during commutation, a more detailed analysis is recommended. Nonetheless, these
assumptions is deemed sufficient for this test.

To test this theory, the setup from section 3.1 was modified. The voltage source
was exchanged for a constant current supply and the ammeter was exchanged for
a voltmeter. In this case an oscilloscope was used instead of a voltmeter to detect
ripples with sufficient accuracy. The modified setup is illustrated below.

MM RIs V

Figure 3.3 The ideal test setup used to detect voltage ripples.

3.2.2 Step 2: Result
After modifying the motor as described in subsection 3.2.1, Figure 3.4 illustrating
the oscilloscope reading of the voltage across the motor was produced. The rota-
tional velocity of the motor shaft was 1.25 Hz, or 75 rpm, which was expected to
produce a ripple frequency of 15 Hz. This is confirmed by the oscilloscope read-
ings, where manual observation yields a frequency of 15 Hz. Furthermore, the FFT
in the window is centered around 15 Hz and indicates that there is a high frequency
disturbance at exactly 15 Hz. These findings show that voltage ripples can be found
on the given motor models as well.
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Figure 3.4 The voltage ripples at 15 Hz and an amplitude of roughly 1.5 V.

3.3 Step 3: Finding ripples on a real control unit

With the existence of voltage ripples proven, the logical next step is to examine
whether these can be found using the ASSA ABLOY control unit utilizing current
control techniques.

3.3.1 Step 3: Method
In order to verify whether voltage ripples could be detected using an actual ASSA
ABLOY control unit utilizing current control, the test setup from labs 1 and 2 was
extensively modified. The power supply was disconnected and, instead, a fully
functioning ASSA ABLOY control unit was connected together with its designated
power supply. The mounted encoders of one of the motors was also connected to
the control unit in order to provide motor feedback for the integrated software. The
same motor test bench was still used however, and the auxiliary motor was still
used to provide a simple, latent, load. Since the motors are driven via an internal
H-bridge setup on the board, two probes were soldered onto the board at the point
of two existing, filtered, measurement signals originating at points "a" and "b" as
shown in Figure 2.7. This was done in order to avoid feeding high power signals
straight into the measurement equipment as well as examining whether the existing
measurement hardware on the control unit could be used to find voltage ripples.

Given this setup, the motor could be manipulated to travel at a constant shaft
velocity of 5.4 Hz, or 325 rpm, whilst measurements could be made using an oscil-

25



Chapter 3. Experimental work

loscope. The setup is visualized in the flowchart below:

Figure 3.5 An overview of the setup used to identify ripples on the control unit.

One concern that was raised from engineers at ASSA ABLOY regarding utiliz-
ing the already existing measurement bridge was the possibility of noise being gen-
erated from onboard watchdog sampling at around 1 kHz. Because of this, potential
disturbances in the range of 500 - 1500 Hz were investigated using the oscilloscope.

3.3.2 Step 3: Result
Given the above mentioned setup, the initial oscilloscope readings are illustrated in
the figures below. Figure 3.6 shows the filtered voltage originating from one side of
the H-bridge of the ASSA ABLOY control unit.
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Figure 3.6 The voltage at one leg of the H-bridge as seen after onboard hardware filtering.

In Figure 3.6, a subtle ripple behavior can be observed as spikes with slightly
higher amplitude than its surroundings. By counting these through visual inspec-
tion it is clear that there is a repeated pattern with a frequency of about 65 Hz.
This is confirmed by the Fast Fourier Transform centered in the figure around 65
Hz showcasing a clear spike. The oscilloscopes allows for different intensity set-
tings, enabling the user to perceive different signal intensities as different shades
of yellow. This is exploited in Figure 3.7 where the voltage/division has been low-
ered to provide an enlarged view of the centre of the signal. By doing this a clear
commutation ripple trace can be perceived.
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Figure 3.7 The ripple can be seen when tuning down the opacity of high intensity noise.

Investigating the possibility of disturbances caused by watchdog sampling as
discussed previously revealed a repeating spike at a frequency of 1 kHz as displayed
in Figure 3.8. This is strong evidence of the discussed watchdog sampling proving
to be a potential problem. Especially if the signal is to be amplified.
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Figure 3.8 Small 1 kHz spikes, likely from watchdog sampling, are observed.

3.4 Step 4: Noise removal and filtering

With the results from the previous experiment, some of the problems could be ad-
dressed. In particular removing the watchdog sampling, as well as filtering and am-
plifying the signal.

3.4.1 Step 4: Method
The first step was to disconnect the measurement signal from the watchdog sam-
pling disturbances seen in the previous paragraph. An attempt at this was done by
designing a clone of the current hardware filtering used in experiment 4 and con-
necting it to one of the legs of the H-bridge. By doing this, the aim is to reproduce
the previous signal but without the 1 kHz disturbances.

The second step was to lower the voltage from the newly implemented clone of
the analog filter in such a way that it resides within the span of 0-5 V. This is impor-
tant in order to be able to use subsequent operational amplifiers operating on single
rail power of 5 V. Furthermore, in order to be able to test both the onboard filtered
connection as well as the newly constructed clone, the input of the filtering solution
would have to have sufficiently high impedance. This was done by implementing
an operational amplifier as a follower. In order to lower the voltage the amplifier
was connected in a high pass filter configuration. As the expected frequencies lies
within 0-500 Hz, this was deemed to be an adequate solution for initial testing. Fur-
thermore, in order to provide a clear signal, a low-pass filter was utilized. In this
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case, a second-order Sallen-Key low-pass filter was implemented without amplifi-
cation, and with a cut-off frequency of around 1000 Hz, with the design mentioned
in subsection 2.5.3. Together these two filtering solutions provide a filter with band-
pass characteristics, and the entire filtering solution is illustrated in Figure 3.9.

10K 10K

10nF

22nF

5V

+

−

10K 120K

UFilter +

−

5V

Uout

680nF

Figure 3.9 An overview over the implemented filters.

3.4.2 Step 4: Result
The results following the above mentioned procedure are displayed in the images
below. In Figure 3.10 the yellow signal illustrates the measurements taken from the
onboard filtering solution with the watchdog sampling clearly visible at 1 kHz. The
green signal shows the cloned solution, clearly indicating that the adverse effects of
such sampling has been effectively avoided.

Figure 3.10 The signal with watchdog sampling (yellow) and without it (green).

The signal as seen after the additional high- and low-pass filter solutions is illus-
trated below in Figure 3.11. The ripple structure is clearly visible, and its frequency
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can be counted visually to 65 Hz. As before, the FFT confirms that there is a signif-
icant frequency component at this exact frequency.

Figure 3.11 The observed ripples after cloning the signal and implementing a band-pass
filter.

3.5 Step 5: Finding ripples on a functional test rig

The next step was to examine whether the results in the previous experiment could
be reproduced on a fully functioning sliding door. This is an important step to take,
as the goal is to examine whether current ripples can be used for velocity and po-
sition tracking in real world applications. The methodology and results of this are
explained below.

3.5.1 Step 5: Method
In order to verify the functionality of the setup on a complete sliding door system,
the brushed DC motor stage used previously would have to be replaced with an
actual motor mounted on a beam. The new motor is attached to a belt drive that
in turn drives a door leaf. The door leaf was loaded with weights equivalent to
86 kg. The same control unit used in the previous lab was kept but connected to
the new peripherals. As such the same probes used to measure the motor signals
in experiment 3 could be used in experiment 4 without additional alterations. The
changes made to the system is displayed schematically below:
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Figure 3.12 An overview of the setup used to identify ripples on a full test rig.

By connecting an external programmer to the system, parameters such as ve-
locity and high/low speed zones could be tuned. This is important in regards to un-
derstanding how the ripples behave at different velocities. For the tests conducted
in this experiment, an opening velocity of 300 mm/s and closing velocity of 150
mm/s was chosen. This should produce a ripple frequency of 200 Hz and 100 Hz
respectively. This would, in turn, correspond to rotational velocities of 1000 rpm
and 500 rpm.

3.5.2 Step 5: Result
The results produced in the experiment are displayed in the figures below. In Fig-
ure 3.13 an entire cycle is displayed, including an opening sequence spanning be-
tween timestamps 2.6 to 11.6 seconds, followed by 2 seconds at standstill after
which the closing sequence lies within 13.6 to 29.2 seconds. Figure 3.14 and Fig-
ure 3.15 provides an enlarged view of the ripples at opening and closing sequence.

Figure 3.13 A full cycle illustrating opening-, standstill and closing sequences.
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Figure 3.14 An enlarged view of the ripples produced during the opening sequence.

Figure 3.15 An enlarged view of the ripples produced during the closing sequence.

These results clearly indicate that the sought after ripples is detectable at the
correct frequencies on the fully functioning door as well. As can be seen in Fig-
ure 3.14 and Figure 3.15 there are slight differences in the ripple quality, where the
opening sequence showcases a less pronounced ripple overlaid on low frequency
disturbances. The closing sequence produced a more distinct ripple with less distur-
bances, which is a reasonable result given the fact that the sequence more closely
resembles the low velocity and constant operation of the motor setup used in the
previous experiment.

Furthermore, there are added dynamics that did not exist in experiment 4
brought on by exchanging constant operation for an actual opening and closing
cycle. This is for example seen in the added signal noise during acceleration and
breaking, and in the differing opening and closing velocity voltages. The graphs
also clearly show that there is still a substantial degree of noise in the signal as well,
although the ripple component is still clearly visible.
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The offset voltages that appear at different velocities is demonstrated more
clearly in Figure 3.16 below, where the signal has gone through a low-pass filter
function on the picoscope.

Figure 3.16 The voltage offset as seen using a software low-pass filter function.

As seen in the figure, during the opening sequence the voltage offset climbs
from 1.6 V to 2.2 V before returning to 1.6 V at standstill. When the door enters the
closing cycle the voltage decreases to 1.28 V before returning to 1.6 V. Furthermore,
the figure also clearly demonstrates how the offset voltage decreases and is subject
to large amounts of disturbances during the breaking phases.

3.6 Step 6: Problem identification and ADC

Given the results produced in the previous experiment, a number of key areas in
need of improvement can be identified. One of them is the problem relating to the
large differences in offset voltage relating to operation at different velocities, and
the fact that the ripple component remains relatively small in relation to this offset.
In order to be able to further amplify this signal, the different offsets have to be re-
moved without adversely affecting the ripple component. This experiment explores
the specifications that such a solution needs to meet.

3.6.1 Step 6: Method
As one of the aims of this project is to be able to count the ripples using a micro-
controller, the requirements of such a solution have to be examined. The particular
microcontroller of interest for this thesis, the Arduino MKR Zero has, as discussed
in section 2.7.1, some limitations. These limitations include the ADC only being
able to handle positive voltages with a maximum input voltage of 3.3 V. Any sig-
nal that exceeds this maximum voltage capacity risks damaging the board or the
analog pins. Because of this fact, the measurement voltage being fed in to the Ar-
duino would have to be constrained to voltages under 3.3 V. This requirement was
not negotiable and would therefore have to be taken into consideration during all
subsequent design steps.
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Furthermore, the resolution of the Arduino ADC would have to be taken in
to account. This means that the signal ripple could not be too small in relation to
the Arduino ADC span in order to avoid quantization errors as well as preventing
external noise from polluting the results. With resolutions at 12 bits being 4 times
more accurate then 10 bits and 16 times more accurate then 8 bits as given by
Equation 3.3 which expands upon Equation 2.9.

12 bits
8 bits

=
12 bit Resolution
8 bit Resolution

= 16 (3.3)

This implies that the chosen resolution is of great importance for accurately
measuring the voltage. For example, a resolution of 8 bits would, given an ADC
range of 0 - 3.3 V, provide a resolution of 0.01289 V, or roughly 12.9 mV. This
can be put in to contrast by increasing the resolution to 12 bits as this would in-
crease the resolution to 0.81 mV. This is also clear from looking at Equation 3.4 and
Equation 3.6.

8 bit ADC: 28 = 256 levels, ∆V8 bit =
3.3 V
256

≈ 0.01289 V (3.4)

10 bit ADC: 210 = 1024 levels, ∆V10 bit =
3.3 V
1024

≈ 0.00322 V (3.5)

12 bit ADC: 212 = 4096 levels, ∆V12 bit =
3.3 V
4096

≈ 0.00081 V (3.6)

Another important aspect to consider in this context that affects the choice of res-
olution is discussed in subsection 2.7.1, where it is stated that the time taken for
a single analog reading to be taken is dependent upon the resolution. As such a
higher resolution leads to a higher degree of processor utilization and might result
in slower performance of other tasks. This means that the choice of resolution will
have to be made in consideration of total utilization time and processor availability.

In order to verify the choice of resolution, the sampling time of the ADC will
be measured at the different resolutions. This will yield an overview of the possible
sample frequencies and processor utilization degree that will shape any future work.

3.6.2 Step 6: Result
Given equations 3.4, 3.5 and 3.6 it is clear that the resolution is greatly affected by
the number of bits used. Measuring the time required for the Arduino MKR Zero
to complete an ADC reading at 8, 10 and 12 bit resolutions yielded the results in
Table 3.2 . The column "Maximum Frequency" denotes the maximum achievable
frequency given the sampling measured sampling times, and providing that no ad-
ditional tasks are allocated to the processor.

These results show that there is no significant differences in sampling time be-
tween the different resolutions. They do, however, show that the sampling times are
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Table 3.2 The measured sampling times and maximum achievable frequency for different
ADC resolutions using the Arduino MKR ZERO.

Resolution Sampling Time Maximum Frequency

8 Bits 814 µs 1228 Hz
10 Bits 835 µs 1198 Hz
12 Bits 857 µs 1167 Hz

lengthy at 0.800 ms to 0.860 ms. This means that there might be problems associ-
ated with sampling fast enough in the future, as more code will have to be integrated
outside of ADC sampling. The maximum ripple frequency to be counted is around
460 Hz, this means that during the period of one such ripple, the ADC can sample
less than 2.67 times. With a 12 bit resolution this shrinks to 2.54 times. This indi-
cates that there might be problems associated with capturing larger ripple velocities
in the future. Since the sample time difference between the 8 and 12 bit resolutions
are about 5% it can be concluded that the 12 bit resolution can be utilized without
compromising the results.

In order to provide an accurate reading, the amplitude of the ripple will still
have to be magnified. Figure 3.14 and Figure 3.15 displays a ripple amplitude of
roughly 0.5 V, indicating that the signal could be magnified approximately 5 times,
to about 2.5 V without compromising the ADC voltage restrictions of 3.3 V. Doing
such would, given a resolution of 12 bits as indicated by Equation 3.6 provide a
resolution of 3086 points for the entire amplitude of the ripple. These results show
that by removing the offset, amplifying the signal and choosing the 12 bit resolution,
the voltage ripples should remain detectable with a high degree of accuracy at lower
frequencies.

3.7 Step 7: Removal of the DC offset

As mentioned before, the offset voltage will have to be removed in order for the
signal to be amplified. This experiment explores some of the possible approaches to
this problem.

3.7.1 Step 7: Method
In order to be able to retain as much information as possible in the signal, an analog
solution for offset removal is desirable. One of the ways this could be done is by
creating a filtered copy of the signal, where the ripple component is removed, and
feeding both the source signal and the filtered clone, or follower signal, to a dif-
ferential amplifier circuit. As such, the common mode voltage should be removed
from the signal, leaving the ripple component without offset. Creating this follower
signal can be done in many ways, but one of them is by probing the signal as it
appears after the Sallen-Key filter and utilizing a low-pass filter in order to remove
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the ripple component from it. A significant problem that arises when utilizing this
method is the fact that the ripple frequencies that are to be measured typically re-
sides within a span of 0-500 Hz. In terms of low-pass filters this is extremely low,
and even if a filter with a cut-off frequency of 1 Hz is designed it will be hard to
ensure a steep enough dampening so as to not affect the ripples, whilst still provid-
ing a filter that moves fast enough to capture the rapid changes of the offset voltage
during acceleration and deceleration.

Another way would be to sample the signal at the same location just mentioned,
but instead by using the ADC of the microcontroller. As such, the signal could
be filtered in software and then reproduced on the digital to analog converter pin,
or DAC pin, of the Arduino. Given proper filtering, this DAC signal could be fed
straight to the differential amplifier, where the offset would be removed. By doing
this, the differential amplifier could also be connected in such a way as to provide a
gain of 5 times the input signal to meet the requirements described in experiment 6.
In order for this to work, another problem would have to be addressed, namely the
fact that the differential amplifier is utilizing a single-rail power supply of 5 V only.
This means that feeding the DAC signal to the differential amplifier together with
the source signal would effectively remove half of the signal, as the output would
be centered around 0 V.

3.7.2 Step 7: Result
By creating a differential amplifier as described in Figure 2.6 with all resistors R
set to 10 kΩ, Uin serves as the input signal from the filtered bridge, and Uref as the
input from the Arduino, which only outputs a DC offset. The resulting signal can
be observed in Figure 3.17. As shown, the center value is approximately zero, ef-
fectively eliminating half of the ripple. Figure 3.18 illustrates the effects of adding
a slight offset of around 1 V, equivalent to a value of 1240 for the standard 12 bit
output resolution of the Arduino MKR Zero. Thus, handling the offset captures the
entire ripple, making it more readable. As demonstrated by the differences between
Figures 3.13 and 3.18, the removal of the unwanted offset and the increase in am-
plitude makes the ripple not only easily identifiable but also more uniform, thereby
simplifying the processing for future stages.
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Figure 3.17 The signal as seen after the differential amplifier.

Figure 3.18 The ripple as seen after the differential amplifier with offset added to the input.
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3.8 Step 8: Comparator

In order to accurately identify the ripple spikes, they must first be converted in
to a uniform structure so that they can be easily read and processed by the given
microcontroller. The simplest way to achieve this is to use an analog comparator
that transforms the ripple in to a square wave, as dictated by a moving reference.

3.8.1 Step 8: Method
With the ripple identifiable using a picoscope, the next step was to make sure the
chosen Arduino microcontroller could read and identify the ripple in order to accu-
rately count them. Doing this necessitates a fast and simple solution that detects the
ripple and then structures it in to a uniform waveform that is easily detectable for
a microcontroller. The solution to this problem was to utilize a single rail, analog
comparator with a reference signal of 1.5 V. The decision to use an analog com-
parator for the comparator was due to the accuracy of the analog resolution and
reading speed compared to that of the ADC and subsequent, comparable, software
solution. In order to provide a simple to view graph on the picoscope and to stick
with the theme of previous OP amplifier solutions, a non-inverting comparator was
used, equal to the one mentioned in Figure 2.5 but without the positive feedback.

3.8.2 Step 8: Result
The resulting comparator signal can be seen in Figure 3.19 below, which displays a
grey square wave representing the comparator output, alternating between the rail-
to-rail voltages of 0-3.3 V. The orange line is, in turn, the analog signal originating
from the differential amplifier and contains the sought after voltage ripple. The blue
line in the middle is pre-set reference voltage of 1.5 V. As can be seen in the figure,
the square wave is relatively accurate in identifying the sought after ripples. There
are, however, some areas where the ripples are read multiple times leading to a more
optimistic velocity estimation than necessary.

Figure 3.19 The resulting comparator output given a constant reference.
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3.9 Step 9: Floating comparator reference

The fixed reference of the previous lab produced some problems that had to be
fixed. One of these problems was the fact that some of the ripples were not properly
counted as the ripple suddenly floated too far above or below the reference. Thus,
a moving reference needed to be implemented and fed to the comparator. Further-
more, the problem of some ripple signatures being read multiple times would have
to be addressed.

3.9.1 Step 9: Method
During picoscope measurements of a run, it could be observed that a fixed refer-
ence was unreliable in capturing all ripples due to the center of the ripple varying in
amplitude. The solution to this problem was to feed the comparator with a varying
reference voltage produced by the Arduino. This was accomplished by reading the
output from the differential amplifier with the ADC aboard a second Arduino and
applying a moving average of 8 samples to this signal, sampled at a frequency of
1 kHz. This averaged signal was then fed to the comparator as the reference value.
The function handling the moving average is a generic function shown in the List-
ing 3.1. It uses the circular buffer structure, as mentioned in subsection 2.8.2, to
more efficiently process new samples.
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1 /* This function implements a generic rolling average
calculation.

2 * -‘mean‘ is an array that stores previously read values.
3 * - ‘readValue‘ is the most recent value to be included

in the average.
4 * - ‘index‘ specifies the current position within the ‘

mean‘ array.
5 * - ‘totalVectorValue‘ represents the cumulative sum of

the values in the ‘mean‘ array.
6 * - ‘sampleNbrBit‘ defines the number of samples,

affecting the size of the ‘mean‘ array and the scaling
of the average.

7 */
8 int rollingMeanGeneric(int *mean, volatile int *readValue,

int *index, int *totalVectorValue, int sampleNbrBit)
9 {

10 // Reduce the total value of the stored vector with the
oldest value.

11 *totalVectorValue -= mean[*index];
12 // Replace the oldest value with newly read value.
13 mean[*index] = *readValue;
14 // Add the new value to the total value of the stored

vector
15 *totalVectorValue += mean[*index];
16 // Increment the index with wrap-around:
17 *index = (*index + 1) % (1 << sampleNbrBit);
18 // Divide the total with the sample size
19 int RollingMean = (*totalVectorValue) >> sampleNbrBit;
20

21 return RollingMean;
22 }

Listing 3.1 An overview of rollingMeanGeneric() in the class ComparatorRefHandler

Furthermore, in order to avoid the problem of having some ripples being counted
multiple times, a hysteresis was implemented, as displayed in Figure 3.19. To do
this, a positive feedback loop with R1 set to 1 kΩ and R2 set to 8 kΩ was used.
Equations 3.7 and 3.8 derived from Equation 2.7, shows us that this solution will
work in most cases. It is, however, not optimal as using a non-inverting comparator
in this manner produces a hysteresis with moving saturation values. With Equa-
tion 3.8 highlighting this as there is a constant voltage whose impact increases at
lower voltages. In the following equation U+ represents the voltage going into the
positive leg of the comparator, Uin is the ripple signal, and Uout is the output signal.

U+ =
UInR2 +UoutR1

R1 +R2
=

UIn ·8000+0 ·1000
1000+8000

=UIn ·0.89 (3.7)
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U+ =
UInR2 +UoutR1

R1 +R2
=

UIn ·8000+3.3 ·1000
1000+8000

=UIn ·0.89+0.367 (3.8)

Although this solution is not perfect, it is deemed good enough for the time
being, as it requires less time being spent on remodelling the circuits. For future
work it might be wise the revisit the comparator design however.

3.9.2 Step 9: Result
The resulting comparator signal given the improvements made can be seen in Fig-
ure 3.20, with an orange line representing the analog signal from the differential
amplifier. The blue line in the middle indicates a moving average of 8 samples, as
outputted from the Arduino’s DAC. The yellow square wave represents the com-
parator output. The moving reference is clearly helping in capturing ripples where
the average amplitude suddenly shrinks. Another results of this implementation is
the possibility to alter this behavior in software to better tailor the solution for even
better results in the future.

Figure 3.20 The resulting comparator output using a moving reference.

To visualize the implemented hysteresis band, Figure 3.21 was created with
two purple lines added post hoc in the picoscope software using the formulated
equations 3.7 and 3.8. This shows that the hysteresis provided better results and
made the comparator less sensitive to false readings.

42



3.10 Step 10: Ripple analysis and echo rejection

Figure 3.21 The resulting comparator output with the hysteresis visualized.

3.10 Step 10: Ripple analysis and echo rejection

With the comparator implemented and the ripple transformed to a square wave that
could be fed to a digital input of the Arduino, the next step was to produce the
necessary software required to accurately count the ripples. Even though the im-
plemented hysteresis produced a better results with many false ripples rejected, the
square wave was still optimistic in counting the ripples. This meant that software
that could filter out unwanted readings caused by repeated spikes of the same ripple
and other noise would have to be implemented. The technique is henceforth called
"echo rejection".

3.10.1 Step 10: Method
With the signal transformed in to a square wave, it can easily be fed into one of
the Arduino’s digital pins. This means that an interrupt routine, triggering at rising
edges, can be attached to the pin in order to count the ripples. The interrupt routine
will essentially be activated every time the comparator output switches from LOW
to HIGH, with the interrupt routine software incrementing the ripple counter each
time it does so. Once the comparator’s outputs could be counted using interrupts,
the frequency of the ripple was calculated by counting the number of interrupts over
a fixed period of time. Furthermore, the ripple counter was saved periodically along
with a timestamp in order for easier post-processing of the data to be conducted.

In this post-processing of the ripple counter and velocity, or frequency, of the
door, special care was taken to ensure that unexpected or odd readings would be
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handled appropriately as to not cause spikes in the graphs. This was important in
order to quickly asses the overall performance of the software solution. The post-
processing filter was implemented constructing a moving average filter taking in
the last 10 ripple measurements, which helped smooth out the data. This approach
removes unusually high or low readings, making the overall results more reliable
and providing a clearer picture of the door’s movement.

In order to provide a benchmark for the calculated velocity, the onboard motor
encoder was utilized in order to produce a more accurate velocity graph. This real
time graph will accompany the velocity graphs henceforth and can be used for
easy comparison between the ripple solution and existing encoder solutions. It is,
however, worth mentioning that, because of the fact that the encoder pulses are
registered in parallel aboard the Arduino, the encoder velocity graph may not be as
accurate as it could have been. This is caused by the fact that the readings made
by the Arduino are more prone to noise than the existing solution on the control
unit. Furthermore, some additional noise can be expected during communications
between the Arduino and the Data streamer function on excel used to produce the
graphs.

As discussed before, due to the structure of the ripple, sometimes comprised of
two or three peaks, the comparator’s counting was often too optimistic, resulting in
a higher-than-expected frequency. This was counteracted by implementing an echo
rejection technique that is called upon each time an interrupt is thrown. The echo
rejection works by utilizing a set delay time during which additional readings are
rejected. The delay is calculated based on the period of a voltage ripple at a certain
door velocity. This system should remove the majority of the false readings given
by the comparator. There are, nonetheless, some drawbacks. First of all, utilizing
this echo rejection delay technique means there is a risk of the system turning into
a self-fulfilling prophecy. Furthermore, if a ripple wave is not properly detected or
many false readings are produced in series, a phase shift in the readings might oc-
cur. However, the expectation is that as long as the majority of readings are correct,
such a phase shift will not have any long lasting implications. With this said, the
echo rejection technique should still provide more merits than flaws to the overall
solution.

For the tests conducted in this experiment, an opening velocity of 300 mm/s and
a closing velocity of 150 mm/s were chosen, along with an average of 8 samples for
the reference to the comparator. This should produce ripple frequencies of 200 Hz
and 100 Hz, respectively.
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3.10.2 Step 10: Result
The result of the implemented counting structure, utilizing a 500 µs delay, can be
seen in Figure 3.22 showcasing an excel graph over the data gathered from the
Arduino. As can be seen in the graph, running both the opening and closing cycles
takes around 24 s. It should also be noted that the calculated ripple is more accurate
around 200 Hz as opposed to 100 Hz, where the readings are optimistic.

Figure 3.22 The results using echo rejection with a 500 µs delay.

Figure 3.23 displays the calculated velocity with a higher delay of 1500 µs . In
this graph, the calculated velocity is instead more accurate around 100 Hz, whereas
the counted ripple at 200 Hz is worse than before.

Figure 3.23 The results using echo rejection with a 1500 µs delay.

3.11 Step 11: Echo rejection adjustment

After implementing echo rejection for a single frequency, a state-based structure
was designed to handle multiple frequencies, changing states based on the door’s
velocities. By adding more states, incorporating a slow moving weighted mean be-
tween transitions, and reducing the frequency of echo rejection calculations, a more
accurate signal was achieved.
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3.11.1 Step 11: Method
With the implementation of the echo rejection, the results were much better. How-
ever, as seen before, each set delay time corresponded with good results at a very
narrow frequency band or state. In order to improve the results over a wider fre-
quency band, more states or frequency ranges needed to be implemented to handle
changing velocities. A transition condition was therefore necessary to facilitate
movement between frequencies, leading to the use of back-EMF as the transition
mechanism. As the back-EMF is proportional to the velocity of the door, it could
be used to approximate this velocity in order to dictate when to move between
states. In short, a higher back-EMF value would indicate a larger door velocity, and
a lower back-EMF indicates a lower velocity. The back-EMF can be derived from
the equation for the motor armature voltage described in Equation 2.1. Using this
relationship, we can further derive Equation 3.9. In the scenario where the current
remains constant, the derivative part becomes zero, as shown in Equation 3.10. To
further enhance the back-EMF readings, a mean of four readings was created to
smooth the signal. The variables in the equations describe the back electromotive
force Eb in an electric motor, where ωr is the rotor’s angular velocity, Ψm is the
magnetic flux linkage, ua is the armature voltage, Ra is the armature resistance, ia
is the armature current, La is the armature inductance, and dia

dt is the rate of change
of armature current over time.

Eb = ωr ·Ψm = ua −Ra · ia −La ·
dia
dt

(3.9)

Eb = ua −Ra · ia −La ·0 (3.10)

During an observation of the back-EMF graph, the corresponding states to dif-
ferent velocity ranges could be identified, thus providing multiple velocity states.
Once these states were identified, appropriate delays were set based on the ob-
served ripple duration at different velocities, ensuring more precise control. To
further smooth the echo rejection delay transitions between the different states, a
mapping was implemented to make the nonlinear transition smoother by breaking it
into smaller linear segments. Because the echo rejection value was prone to causing
jitter due to frequent state shifts, the echo rejection calculation rate has been fixed
at 50 ms, instead of being recalculated each run. Additionally, the transitions should
be made less prone to jitter by adding a weighted mean. A weighted mean approach,
rather than a rolling mean, was used because switching between mappings caused
errors with the rolling mean, but not with the weighted approach. In this case, the
weights are 60 % for the last value and 40 % for the new one. This state structure is
shown in the Listing 3.2.
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1 void adjustableEchoRejectionStateMachine()
2 {
3 unsigned long timeDifference = millis() -

echoRejectionTime;
4 if (timeDifference >= 50)
5 {
6 // Determine the current state
7 int currentState = getBackEMFState(

UMotorBackEMFValue_RollingMean);
8 int maxEchoRejectionMicros=0, minEchoRejectionMicros=0,

minValueFromBackEMF=0, maxValueFromBackEMF=0;
9 // Use a switch-case to handle different states

10 switch (currentState)
11 {
12 case HIGH_BACK_EMF:
13 //Set maxEchoRejectionMicros, minEchoRejectionMicros,

minValueFromBackEMF, maxValueFromBackEMF
14 break;
15 case MEDIUM_BACK_EMF:
16 //Set maxEchoRejectionMicros, minEchoRejectionMicros,

minValueFromBackEMF, maxValueFromBackEMF
17 break;
18 case LOW_BACK_EMF:
19 //Set maxEchoRejectionMicros, minEchoRejectionMicros,

minValueFromBackEMF, maxValueFromBackEMF
20 break;
21 }
22 // The map function uses linear interpolation to find

corresponding EchoRejection time according the back EMF
speed

23 echoRejection_CurrentReadValue = map(
UMotorBackEMFValue_RollingMean, minValueFromBackEMF,
maxValueFromBackEMF, maxEchoRejectionMicros,
minEchoRejectionMicros);

24 // To smoothen the echoRejection delay an weighted mean
with focus on the old value is used.

25 echoRejectionDelay = weightedAverage(
echoRejection_LastReadValue,
echoRejection_CurrentReadValue, weightLast, weightNew);

26 echoRejection_LastReadValue =
echoRejection_CurrentReadValue;

27 echoRejectionTime = millis();
28 }
29 }

Listing 3.2 The echo rejection state machine in the class ComparatorRefHandler.
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3.11.2 Step 11: Result
To identify the different transition conditions for transitioning between states(echo
rejection delays), a run was conducted at an opening velocity of 700 mm/s and a
closing velocity of 100 mm/s, capturing the whole spectrum of velocities tested.
The back-EMF data was gathered and calculated onboard the Arduino in bit values.
These values was then subsequently converted to voltages in post-processing. This
is shown in Figure 3.24 and forms the basis for identifying different states.

Figure 3.24 The absolute value of the back-EMF, as seen over an entire operation cycle.

The next step was to generate smooth transitions between states by adding the
mapping and adjusting the echo rejection calculation rate to a fixed value. A refer-
ence graph illustrating the variable delay on the y-axis and with time on the x-axis
was constructed for this purpose, as shown in Figure 3.25. The graph will provide an
easy means of comparing the results before and after the smoothed out transitions.

Figure 3.25 The echo rejection delay as seen before filtering.

As can be seen in the Figure 3.25, when the velocity is near zero and the door is
stationary, the echo rejection time is approximately 70 ms. As the frequency reaches
around 200 Hz, there is a change in state, mapping from 75 ms to 17.5 ms, down to
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mapping from 3.25 ms to 2.4 ms. This is evident from the graph at 1 second, where
the echo rejection time stabilizes at about 2.4 ms. It then switches back to mapping
from 75 ms to 17.5 ms as the frequency approaches 0 Hz, which occur at around
7 s. Upon reaching 12 s, the frequency lies around 100 Hz, prompting a state change
to map from 17.5 ms to 7.5 ms, resulting in a echo rejection time of approximately
7.5 ms.

Figure 3.26 The echo rejection delay as seen after filtering.

Figure 3.26 shows the echo rejection time for the entire run with weighted val-
ues, showing a smoother signal. As shown in the figures 3.27 to 3.31, data represent-
ing runs with the new features over different door velocity settings are illustrated.
The first ripple peak represents the ripple generated from the opening sequence of
the door, while the second peak corresponds to the closing sequence of the door.
These peaks provide a clear visualization of how the voltage ripple counting vary
with changes in velocity setting and how its accuracy changes.

Figure 3.27 The observed ripple at 300 mm/s and 100 mm/s.
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Figure 3.28 The observed ripple at 300 mm/s and 150 mm/s.

Figure 3.29 The observed ripple at 300 mm/s and 200 mm/s.

Figure 3.30 The observed ripple at 500 mm/s and 150 mm/s.
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Figure 3.31 The observed ripple at 700 mm/s and 150 mm/s.

3.12 Step 12: Fine-Tuning echo rejection

Having implemented an adjustable echo rejection technique, there was still an ob-
servable difference between the velocities registered by the onboard encoder and
velocity estimation given by the counted ripples. This experiment goes through the
steps of fine tuning the echo rejection software in order to provide better results.

3.12.1 Step 12: Method
After examining the results at different velocities, a need for more states was iden-
tified as some velocities of the door, like 100 mm/s, differed from the encoder read-
ings. By implementing another state handling lower velocities than 150 mm/s, the
accuracy of the ripple velocity estimation was improved. However, to handle higher
velocities such as 700 mm/s, another approach is needed due to the reference of 8
samples being too slow and the comparator hysteresis being too high.

3.12.2 Step 12: Result
After implementing the low velocity state, the results for velocities such as 100
mm/s improved, as can be shown in Figure 3.32, contrary to the Figure 3.27. How-
ever, the problem with higher velocities still exists, with some ripples being missed,
as can be shown in Figure 3.32.
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Figure 3.32 The observed ripple at 700 mm/s and 100 mm/s.

To ensure that previous results did not change with the implementation of the
new state, a run with the new settings was done at 300 mm/s and 150 mm/s, as
shown in Figure 3.33. As can be seen, the changes did not affect the accuracy.

Figure 3.33 The observed ripple at 300 mm/s and 150 mm/s.

To visualize the problems encountered during the run at 700 mm/s, some fo-
cused pictures of the problem areas are shown in figures 3.34 and 3.35. As can be
seen, the reference is not fast enough to accurately track some of the ripples, and in
combination with the hysteresis being too large, this results in some voltage ripples
not being counted.
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Figure 3.34 An instance where the hysteresis fails to capture the ripple.

Figure 3.35 An instance visualizing how the reference is too slow to capture the ripple.
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4
Results

In the following section, the results produced by the experiments described in the
experimental work are compiled into a single result, summarizing the outcomes of
the experiments and providing an overview of the circuit structure as well as the
resulting voltage ripple.

4.1 Circuit schematics
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Figure 4.1 The resulting circuit used in the project.

4.2 Resulting voltage ripple counting

As discussed in chapter 3, a voltage ripple could be identified, filtered an amplified
so as to be registered by a suitable microcontroller. The results, given the circuit
structure displayed in Figure 4.1, is visualized in Figure 4.2. In the figure, the en-
larged ripple is visualized by the orange signal, the moving reference produced by
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the Arduino is displayed as the blue signal, and the output from the comparator is
the yellow square wave.

Figure 4.2 The resulting comparator output using a moving reference.

With the results shown in Figure 4.2, the ripple could be counted utilizing an
Arduino interrupt routine connected to a digital pin triggering on rising flanks. By
utilizing an echo rejection technique, false readings could be minimized, leading
to the resulting velocity estimations displayed in Figure 4.3 where it is compared
against the velocity as given by the high resolution encoder installed onboard the
motor and registered in parallel aboard the Arduino.

Figure 4.3 The observed ripple at 300 mm/s and 150 mm/s.

While the velocity estimation based upon the voltage ripple is reasonably close
to that of the onboard encoder during door velocites of both 150 mm/s and 300
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mm/s, the results start to differ when the door velocity increases. This is visualized
below in Figure 4.4.

Figure 4.4 The observed ripple at 700 mm/s and 100 mm/s.

The resulting velocity estimations over the different velocities are compiled in
Table 4.1 below.

Table 4.1 The observed ripple based velocity over different frequencies.

Door velocity
[mm/s]

Rotational
velocity (shaft)

[rpm]

Expected ripple
frequency [Hz]

Observed ripple
frequency [Hz]

700 2300 460 275-420
500 1650 330 250-350
300 1000 200 200
200 665 133 110-135
150 500 100 100
100 330 66 60-70

4.3 Associated problems

A number of problems could be identified during the experimental work which
compromised the accuracy of the resulting ripple-based velocity estimation. One of
the problems was the limited sampling rate of the Arduino ADC. Another problem
was related to the fact that variations in the voltage ripple signal led to some ripples
being missed, and some counted additional times. Furthermore, the velocity was
not properly detected during deceleration or braking phases of the motor, which
was caused by other large disturbances in the signal.

The slow reading of the Arduino ADC produced by the onboard AnalogRead()
function resulted in loss of accuracy at higher door velocities. The effects of this are
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visualized in Figure 4.5 where the door travels at 700 mm/s, resulting in a ripple at
460 Hz. The maximum ADC reading frequency that could be achieved utilizing the
standard function with an accuracy of 12 bits was 1167 Hz. This can also be seen
in Figure 4.5, as the reference wave value is updated at the same frequency. In the
figure, the reference value was produced as a moving average over 8 samples. This
means that whilst the reference could be made to move in greater steps than visual-
ized by utilizing a smaller sample buffer, it would have no effect on the underlying
issue of the slow reading frequency for any bit resolution previously discussed.

Figure 4.5 An instance visualizing how the reference is too slow to capture the ripple.

As previously mentioned, the sampling rate at 12 bit resolution was 1167 Hz.
Given the observed ripple frequency of 460 Hz, a resulting ripple resolution of 2.54
samples per ripple cycle is yielded.

Regarding the fact that some ripples were missed, whilst others were counted
several times, the implementation of the echo rejection technique utilizing the back
EMF as guard condition for state transition only partly solved the problem. While
the problem was reduced, the result was still not perfect. As discussed in sec-
tion 3.10, the method of using a delay to reject additional readings ran the risk of
turning the program in to a self fulfilling prophecy. This is exemplified in Figure 4.6.
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Figure 4.6 An instance visualizing how some inputs are rejected, and associated problems.

As can be seen in Figure 4.6, the orange line is the ripple, the blue line is the
comparator reference, the yellow line is the comparator output, and the green line is
the comparator outputs acknowledged by the echo rejection method, as visualized
with a digital pin aboard the Arduino. Looking at the first 6 ripples starting from
14.86 s, it is clear that additional spikes are rejected, and that the counting works
as intended. However, at around 14.915 s a ripple is registered earlier than usual,
leading to a lingering spike at 14.924 s being registered as an independant ripple.
Because of this the subsequent ripple is rejected at 14.931 s and the echo rejection
only lines up with the ripples again at the ripple after the rejected one, at 14.938
s. In this case, the number of counted ripples is correct, although the underlying
reason is a mistaken ripple.

During the experimental work, a pattern could be detected during braking, or
desecration, cycles. This is exemplified in Figure 4.3. In the figure, the ripples are
counted as intended during acceleration and in the constant velocity zones. At both
7.5 s and 24 s the number of counted ripples sharply drops, however, and in both
cases results is an estimated velocity of roughly 20 Hz. The reason behind this
can be seen in Figure 4.7, where another unknown, uniform and alternating ripple
pattern is observed. These are likely not waves caused by the commutation process
in the motor, and can therefore not be used to estimate the velocity. During the
deceleration phase these waves are, however, the only wave structures that are easily
observed. Because of this, they are picked up by the comparator and subsequently
the Arduino.
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4.3 Associated problems

Figure 4.7 Visualized is the low frequency pattern that emerged during deceleration.
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5
Discussion

The final results and iterations differed slightly from the expectations outlined in the
problem description (section 1.2), which also aimed to control the door by replac-
ing the encoder signal. Nevertheless, removing the encoder and achieving accurate
results proved to be sufficiently challenging. The solution of tracking the commu-
tation frequency first in the form of current ripples (Figure 3.2), and later in the
form of voltage ripples (Figure 3.4), showed predominantly positive results at lower
velocities, where the accuracy met our goal. Expanding the solution to include an
actual sliding door system also produced positive results at low to medium veloc-
ities up to 250 Hz, or 1250 rpm. At higher velocities, above 1250 rpm, the results
were not as good due to a number of unresolved problems. This indicates the need
for further optimization to handle faster operational speeds effectively. One such
improvement would be to increase the ADC sampling speed, as this was the biggest
limiting factor identified.

Compared to the method of using nonlinear back-EMF integration for posi-
tion control, counting voltage ripples turned out be a viable alternative if it can
be done accurately. The fact that voltage or current ripples are the product of a
periodic commutation phenomenon provides a means to counteract the drift in the
position estimation that is prone to occur when integrating over the velocity. This
is a problem especially when utilizing back-EMF techniques as mentioned in sec-
tion 2.3. This means that, with further tuning, voltage ripple counting might serve
as a replacement or complement to existing encoder solutions depending on the
implementation. With this said, there are both advantages and disadvantages with
the solution presented in this thesis.

The advantages of the implemented circuitry includes its cost-effectiveness
compared to high-resolution encoders that produce hundreds of pulses per rotation.
This does, however, rely upon the fact that an adequate microcontroller, or equiv-
alent hardware, that can support the software and is available for additional tasks
already exists.
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5.1 Future work

The implemented system can also process signals quickly with, given appro-
priate tuning, minimal delay and focuses solely on the desired ripple. It does this
without altering it, thus providing an accurate reading of the ripple for further use.
On the other hand, the disadvantages includes the dependency on a relatively fast
microcontroller with an accurate ADC that can handle various signals. The initial
high-pass filter adds complexity to the circuit, for which simpler solutions may
exist to lower the voltage range. Additionally, the comparator was designed as
a non-inverting comparator, which produces hysteresis with a shifting saturation
value. Using a constant saturation may provide better results and can be achieved
by switching input terminals for the reference and ripple signal. Another solution
would be to simple utilize Equation 3.8 in software so as to always produce a
reference with an appropriate hysteresis that centers around the ripple. The largest
disadvantage at the moment, however, is the way the measurements are made from
the H-bridge, where a differential reading across both legs holds the promise of
enabling accurate measurements to be made during braking phases as well. This
is something that is not possible at the moment and that can not be addressed by
means of software. Addressing these disadvantages of the circuitry and dealing with
the existing software problems should enable further improvements to be achieved.
Such software problems include the analog reading speed, which should be pos-
sible to increase by writing new analogue read functions tailored to the problem.
Moreover, large improvements can likely be achieved by removing the back-EMF
as a safeguard for state changes and further investigating the problem with the
self-fulfilling prophecy.

5.1 Future work

For future development, a more sophisticated software environment is needed. This
should include merging the two microcontrollers into one unit and utilizing the
multiple unused clocks in the SAMD21 microcontroller to operate various func-
tions concurrently. Additional circuitry for the Digital-to-Analog Converter (DAC)
should be designed to leverage the numerous PWM pins on the SAMD21.

For real-time application use, an approach to determine the mean current volt-
age ripple frequency should be implemented. This would involve calculating the
ripple frequency based on the counted voltage ripples and elapsed time, followed
by filtering the result with a generic rolling mean function. This analysis should be
integrated directly into the function that outputs the ripple frequencies, rather than
being performed post hoc. It is also evident that optimizing the ADC setup or using
alternative methods to increase sampling efficiency is critical. This was seen due
to the given constraints of the current system only being able to sample at 1167
Hz with a 12 bit resolution. A sampling rate that turned out to be insufficient for
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capturing the high-frequency voltage ripples accurately. This can be exemplified
with the ripples that were observed at 460 Hz where the system, at the moment,
is able to sample a maximum of three times per ripple which is obviously to low.
In general, enhancing the ADC’s capability to handle higher frequencies without
losing resolution could significantly improve the accuracy of ripple detection and
velocity estimation. Enhancing ADC performance on the SAMD21 can be done by
adjusting its settings to move away from standard Arduino functions. This includes
enabling Direct Memory Access (DMA) for efficient data transfer, using overflow
features to manage high-frequency data, and increasing the ADC clock speed to
boost sampling rates. These changes are just a few options how to improve it and
can significantly improve the system’s speed and accuracy in capturing rapid volt-
age ripple changes.

In the hardware section, the critical error of only utilizing a single node on the
H-bridge, point "a" in Figure 2.7, needs to be addressed for more robust readings, as
well as possibly remedying and correcting the unknown pattern that appears during
braking as shown in Figure 4.7. Not doing so means the ripple counting technique
is unusable during a large portion of the operational range of the door, due to the
braking signals being erratic with no trace of commutation ripples to be observed.

It is also important to find another solution for lowering the voltage besides
using a high-pass filter and fixing the shifting saturation level to be constant. Addi-
tionally, conducting a cost analysis of the circuitry and testing the setup and code
on a ASSA ABLOY control unit is crucial to determine if it can be implemented
on their current system, or if further hardware changes needs to be made to enable
the technique to be incorporated in to their sliding door systems in the future. This
would ensure that the solution is not only technically viable but also economically
feasible.

Unfortunately, due to the time limitations of the project, the scenarios and speed
of voltage ripple counting were restricted to lower and mid-range speeds in undis-
turbed scenarios. This meant there was no human interaction except for initiating
the door sequence, which differs from potential commercial applications. Further-
more, the available time was insufficient to fully explore and develop the technique
to completely replace the encoder.
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6
Conclusion

To conclude the results of the report and this project, and in turn answer the ques-
tions described in the problem description (section 1.2). To implement an adequate
control system without using an encoder, a similar measurement system to an en-
coder needs to be created without actually using one. This can be achieved by
utilizing the phenomenon of voltage ripples found in subsection 3.2.1, which can
be utilized in a manner similar to that of an encoder. Accuracy in measurements
is achieved by filtering the signal to remove unwanted noise where after the ripple
component is amplified. For the brushed DC motor, the implementation involves
the use of filter circuits, amplifiers, comparators, differential amplifiers, and micro-
controllers that samples a signal originating from the H-bridge used motor control
aboard the ASSA ABLOY control unit. However, the system’s performance has
its limitations such as the current circuit configuration and the ADC’s sampling
capabilities, particularly during high-speed operations, deceleration and braking.
Leading to accurate measurements only being feasible at medium to low velocities
and given that operation is conducted within an ideal environment.

To further enhance the accuracy and reliability of the system, several ad-
justments are necessary. The improvements should focus on refining the circuit
schematics and components to better manage noise and improve signal clarity,
while at the same time simplifying the circuit as much as possible but still main-
taining its reading accuracy. It is also crucial to expand the measurements across
the H-bridge to enable readings to be made during all phases of operation, in-
cluding opening, closing, standstill and braking phases. In contrast to the current
implementation that does not work during deceleration or braking phases. On the
software side, it is important to enhance the ADC capabilities to increase sampling
rates and to implement a more sophisticated signal processing to identify all mo-
tor ripples in the noise. This is especially important during high-velocity operations.

With the current solution it is not possible to implement an adequate control sys-
tem for motor control using solely voltage ripples as a replacement for an encoder.
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Chapter 6. Conclusion

But this thesis has proved that further research based upon the findings produced in
this report might enable this to be done in the future.
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7
Appendix A: Arduino Code

Arduino C++ Code for Differential Amplifier Signal
Processing

1

2 #include <SPI.h>
3 #include <stdint.h>
4 #include <Arduino.h>
5

6 //*** Pins ***//
7 #define PIN_ARDUINO_DAC_OUT A0 // The pin that produces the

DAC signal that is fed to the differential amplifier.
8 #define PIN_ARDUINO_DAC_IN A1 // The source signal pin that

is to be filtered and reproduced as the DAC output.
9

10 //*** Constants ***//
11 #define BIT_RESOLUTION 12 // The analog

reading bit resolution.
12 #define BIT_RESOLUTION_TO_INT 4096 // Conversion

factor from bit resolution to integer.
13 #define OFFSET_DIFF_AMPLIFIER 1240 // Increase

the duty-cycle of the DAC to keep the entire
measurement signal above zero. Necessary as the
Amplifier is powered on a single rail.

14 #define SAMPLE_NBR_DAC_BIT 4 // Bit size for
calculating the size of the sample array for rolling
mean.

15

16 //*** Rolling Mean Variables for Differential Amplifier
Output ***//

17 volatile int UMotor2DiffAmpValue_RollingMean = 0; // Rolling
mean of the differential amplifier output voltage.

18 int UMotor2DiffAmp_TotalVectorValue = 0; // Total
sum of values for calculating the rolling mean.
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19 int UMotor2DiffAmp_Index = 0; // Current
index in the rolling mean array.

20 int UMotor2DiffAmp_Mean[1 << SAMPLE_NBR_DAC_BIT]; // Array
to hold mean values for rolling calculations.

21

22 // %%%%%%%%%%%%%%%%%%%%%%%%% SETUP %%%%%%%%%%%%%%%%%%%%%%%%%
23 void setup()
24 {
25 // Initialize and set analog resolution to BIT_RESOLUTION,

12 bits (Standard value).
26 analogReadResolution(BIT_RESOLUTION);
27 analogWriteResolution(BIT_RESOLUTION);
28

29 }
30

31 // %%%%%%%%%%%%%%%%%%%%%%%%% LOOP %%%%%%%%%%%%%%%%%%%%%%%%%
32 void loop()
33 {
34 UMotor2DiffAmp_RollingMean();
35 offset2DiffAmplifier_DAC();
36 }
37

38 // This function produces the filtered value of the motor
voltage, as seen after the first stage ampliier,

39 // via the DAC. This is subsequently fed to the positive
input off the differential amplifier,

40 // where it is subtracted from the hardware filtered source
signal.

41 // This will leave the sought after ripple component as the
only output by removing the DC offset.

42 void offset2DiffAmplifier_DAC()
43 {
44 int output_DAC = UMotor2DiffAmpValue_RollingMean;
45 //Adding an offset(1240) to increase the reference value

above zero and making sure it does not surpass
BIT_RESOLUTION_TO_INT(4096)

46 int outputMappedAdjusted_DAC = max(0,min(output_DAC +
OFFSET_DIFF_AMPLIFIER, BIT_RESOLUTION_TO_INT));

47 analogWrite(PIN_ARDUINO_DAC_OUT, outputMappedAdjusted_DAC)
;

48 }
49

50 // This function provides software filtering of the measured
motor voltage as it appears after

51 // the first OP stage. Is used to produce the DAC signal.
52 void UMotor2DiffAmp_RollingMean()
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53 {
54 // Reduce the total value of the stored vector with the

oldest value.
55 UMotor2DiffAmp_TotalVectorValue -= UMotor2DiffAmp_Mean[

UMotor2DiffAmp_Index];
56 // Replace the oldest value with newly read value.
57 UMotor2DiffAmp_Mean[UMotor2DiffAmp_Index] = analogRead(

PIN_ARDUINO_DAC_IN);
58 // Add the new value to the total value of the stored

vector
59 UMotor2DiffAmp_TotalVectorValue += UMotor2DiffAmp_Mean[

UMotor2DiffAmp_Index];
60 // Increment the index with wrap-around
61 UMotor2DiffAmp_Index = (UMotor2DiffAmp_Index + 1) % (1 <<

SAMPLE_NBR_DAC_BIT);
62 // Divide the total with the sample size
63 UMotor2DiffAmpValue_RollingMean = (

UMotor2DiffAmp_TotalVectorValue) >> SAMPLE_NBR_DAC_BIT;
64 }

Listing 7.1 Arduino class DCdiffHandler used in the differential amplifier

Arduino C++ Code for the compartor and voltage ripple
counting

1

2 #include <SPI.h>
3 #include <stdint.h>
4 #include <Arduino.h>
5

6 //*** Constants ***//
7 #define BIT_RESOLUTION 12 // The analog reading bit

resolution.
8

9 //*** Pin Definitions ***//
10 #define PIN_ENCODER_IN 0 // The encoder input

pin. Later set to detect change via ISR.
11 #define PIN_COMPARATOR_IN 1 // The comparator

output pin.
12 #define PIN_ARDUINO_DAC_OUT A0 // The DAC output pin

connected to differential amplifier.
13 #define PIN_ARDUINO_DAC_IN A1 // The source signal

pin for DAC output.
14 #define PIN_DIFFAMP_OUTPUT A2 // The output pin from

the differential amplifier.
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15 #define PIN_U_MOTOR_1_MCU A5 // Motor control pin 1.
16 #define PIN_U_MOTOR_2_MCU A3 // Motor control pin 2.
17 #define PIN_I_MOTOR A4 // Motor current

measurement pin.
18 #define PIN_COMPARATOR_OUTPUT 6 // The comparator

output pin.
19

20 //*** Encoder Variables ***//
21 int encoderPinValue = 0;
22 int encoderLastPintValue = 0;
23 int encoderCount = 0;
24 int encoderSwitchCount = 0;
25 unsigned long encoderCurrentTime = 0;
26 unsigned long encoderLastTime = 0;
27

28 //*** Comparator Variables ***//
29 int comparatorPinValue = 0;
30 int comparatorLastPinValue = 0;
31 int comparatorCount = 0;
32 int lastComparatorCount = 0;
33 unsigned long lastComparatorTime = 0;
34

35 //*** Motor Control and Measurement Variables ***//
36 int StartGatheringDataFlag = 0;
37 int U_MOTOR_1_MCU = 0;
38 int U_MOTOR_2_MCU = 0;
39 int I_MOTOR = 0;
40

41 //*** Rolling Mean Calculation for Back EMF and Filter
Output ***//

42 #define SAMPLE_NBR_BACKEMF_BIT 2
43 #define SAMPLE_NBR_BACKEMF (1 << SAMPLE_NBR_BACKEMF_BIT)
44 volatile int UMotorBackEMFValue_RollingMean = 0;
45 volatile int UMotorBackEMFValue_LastReadValue = 0;
46 int UMotorBackEMF_TotalVectorValue = 0;
47 int UMotorBackEMF_Index = 0;
48 int UMotorBackEMF_Mean[1 << (SAMPLE_NBR_BACKEMF_BIT)];
49

50 volatile int UMotorFilterOutputValue_RollingMean = 0;
51 volatile int UMotorFilterOutput_LastReadValue = 0;
52

53 #define SAMPLE_NBR_2_OUTPUT_BIT 1
54 int UMotorFilterOutput_2Samples_TotalVectorValue = 0;
55 int UMotorFilterOutput_2Samples_Index = 0;
56 int UMotorFilterOutput_2Samples_Mean[1 << (

SAMPLE_NBR_2_OUTPUT_BIT)];
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57

58 #define SAMPLE_NBR_4_OUTPUT_BIT 2
59 int UMotorFilterOutput_4Samples_TotalVectorValue = 0;
60 int UMotorFilterOutput_4Samples_Index = 0;
61 int UMotorFilterOutput_4Samples_Mean[1 << (

SAMPLE_NBR_4_OUTPUT_BIT)];
62

63 #define SAMPLE_NBR_8_OUTPUT_BIT 3
64 int UMotorFilterOutput_8Samples_TotalVectorValue = 0;
65 int UMotorFilterOutput_8Samples_Index = 0;
66 int UMotorFilterOutput_8Samples_Mean[1 << (

SAMPLE_NBR_8_OUTPUT_BIT)];
67

68 #define SAMPLE_NBR_16_OUTPUT_BIT 4
69 int UMotorFilterOutput_16Samples_TotalVectorValue = 0;
70 int UMotorFilterOutput_16Samples_Index = 0;
71 int UMotorFilterOutput_16Samples_Mean[1 << (

SAMPLE_NBR_16_OUTPUT_BIT)];
72

73 //*** Timing and Debounce Variables ***//
74 unsigned long serialOutPutTime = 0;
75 unsigned long backEMFTime = 0;
76 unsigned long comparatorCurrentTime = 0;
77 volatile int echoRejectionDelay = 0;
78 int echoRejection_LastReadValue = 0;
79 int echoRejection_CurrentReadValue = 0;
80 unsigned long echoRejectionTime = 0;
81

82 //*** Weights for Rolling Means ***//
83 double weightLast = 0.6;
84 double weightNew = 0.4;
85

86 //*** States based on Back EMF ***//
87 enum BackEMFState {
88 VERY_HIGH_BACK_EMF,
89 HIGH_BACK_EMF,
90 MEDIUM_BACK_EMF,
91 LOW_BACK_EMF,
92 VERY_LOW_BACK_EMF
93 };
94

95

96

97 // %%%%%%%%%%%%%%%%%%%%%%%%% SETUP %%%%%%%%%%%%%%%%%%%%%%%%%
98 void setup()
99 {
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100

101 // Encoder interrupt counter pin [Pin 0].
102 pinMode(PIN_ENCODER_IN, INPUT);
103 attachInterrupt(digitalPinToInterrupt(PIN_ENCODER_IN),

ISR_encoder, RISING);
104

105 // The counted Ripples visualized as a square wave output.
Only for oscilloscope use. [pin 6].

106 pinMode(PIN_COMPARATOR_IN, INPUT);
107 attachInterrupt(digitalPinToInterrupt(PIN_COMPARATOR_IN),

ISR_comparator, RISING);
108

109 // Initialize and set analog resolution to BIT_RESOLUTION,
10 bits (Standard value).

110 analogReadResolution(BIT_RESOLUTION);
111

112

113 // Initializes serial communication at baud rate 115200.
114 Serial.begin(9600);
115 serialOutPutTime = millis();
116 backEMFTime = millis();
117 lastComparatorTime = micros();
118 }
119

120 // %%%%%%%%%%%%%%%%%%%%%%%%% LOOP %%%%%%%%%%%%%%%%%%%%%%%%%
121 void loop()
122 {
123 UMotorBackEMF_RollingMean();
124 adjustableEchoRejectionStateMachine();
125 UMotorFilterOutput_RollingMean();
126 comparatorOutPrint();
127 }
128

129

130 // Interrupt Service Routine (ISR) for the comparator.
131 // Triggered on rising edges detected on the comparator’s

input pin.
132 void ISR_comparator()
133 {
134 // Record the current time in microseconds at the moment

of interrupt.
135 comparatorCurrentTime = micros();
136

137 // Calculate the time difference between the current and
the last interrupt.

138 unsigned long timeDifference = comparatorCurrentTime -
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lastComparatorTime;
139

140 // Check if the current interrupt occurred within the
echo rejection delay window.

141 if (timeDifference <= echoRejectionDelay)
142 {
143 return;// Exit the ISR if the time since the last

interrupt is too short.
144 }
145

146 // Increment the comparator count to track how many
times the comparator has triggered.

147 comparatorCount++;
148

149 // Update the last comparator time to the current time
after a valid event.

150 lastComparatorTime = comparatorCurrentTime;
151 }
152

153 // Interrupt Service Routine (ISR) for the encoder.
154 // Triggered on rising edges detected on the encoder’s input

pin.
155 void ISR_encoder()
156 {
157 // Record the current time in microseconds at the moment

of interrupt.
158 encoderCurrentTime = micros();
159

160 // Calculate the time difference between the current and
the last interrupt.

161 unsigned long encoderDeltaTime = encoderCurrentTime -
encoderLastTime;

162

163 // Check if the current interrupt occurred within the
debounce delay window.

164 if (encoderDeltaTime < 10)
165 {
166 return; // Exit the ISR if the time since the last

interrupt is too short.
167 }
168

169 // Increment the encoder count to keep track of movement
or rotation.

170 encoderCount++;
171

172 // Update the last comparator time to the current time
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after a valid event.
173 encoderLastTime = encoderCurrentTime;
174 }
175

176

177 void comparatorOutPrint()
178 {
179 // Calculate the time difference since the last serial

output
180 unsigned long timeDifference = millis() - serialOutPutTime

;
181

182 // Check if enough time has passed since the last output (
minimum interval: 10 milliseconds)

183 if (timeDifference >= 10)
184 {
185 // Disable interrupts to ensure serial printing is not

interrupted
186 noInterrupts();
187

188 // Print various data separated by commas
189 Serial.print(timeDifference);
190 Serial.print(",");
191 Serial.print(comparatorCount);
192 Serial.print(",");
193 Serial.print(encoderCount);
194 Serial.print(",");
195 Serial.print(UMotorBackEMFValue_RollingMean);
196 Serial.print(",");
197 Serial.print(echoRejectionDelay);
198 Serial.println("");
199

200 // Enable interrupts after printing is done
201 interrupts();
202

203 // Update the timestamp of the last serial output
204 serialOutPutTime = millis();
205

206 // Store the current comparator count for comparison
with the next reading

207 lastComparatorCount = comparatorCount;
208 }
209 }
210

211 /* This function implements a generic rolling average
calculation.
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212 * - ‘mean‘ is an array that stores previously read values
.

213 * - ‘readValue‘ is the most recent value to be included
in the average.

214 * - ‘index‘ specifies the current position within the ‘
mean‘ array.

215 * - ‘totalVectorValue‘ represents the cumulative sum of
the values in the ‘mean‘ array.

216 * - ‘sampleNbrBit‘ defines the number of samples,
affecting the size of the ‘mean‘ array and the scaling
of the average.

217 */
218 int rollingMeanGeneric(int *mean, volatile int *readValue,

int *index, int *totalVectorValue, int sampleNbrBit)
219 {
220 // Reduce the total value of the stored vector with the

oldest value.
221 *totalVectorValue -= mean[*index];
222 // Replace the oldest value with newly read value.
223 mean[*index] = *readValue;
224 // Add the new value to the total value of the stored

vector
225 *totalVectorValue += mean[*index];
226 // Increment the index with wrap-around:
227 *index = (*index + 1) % (1 << sampleNbrBit);
228 // Divide the total with the sample size
229 int RollingMean = (*totalVectorValue) >> sampleNbrBit;
230

231 return RollingMean;
232 }
233

234 // Computes the rolling mean of the back electromotive force
(EMF) readings from the motor.

235 void UMotorBackEMF_RollingMean()
236 {
237 // Calculate the time difference since the last back EMF

reading
238 unsigned long timeDiffrence = millis() - backEMFTime;
239

240 // Check if enough time has passed since the last reading
(minimum interval: 15 milliseconds)

241 if (timeDiffrence >= 15)
242 {
243 // Read motor voltage and current values
244 U_MOTOR_1_MCU = analogRead(PIN_U_MOTOR_1_MCU);
245 U_MOTOR_2_MCU = analogRead(PIN_U_MOTOR_2_MCU);
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246 I_MOTOR = analogRead(PIN_I_MOTOR);
247

248 // Compute the back EMF value using motor voltage and
current readings

249 UMotorBackEMFValue_LastReadValue = abs((U_MOTOR_2_MCU -
U_MOTOR_1_MCU) - (I_MOTOR / 3) + 33); // (33 for
reference value taken from the graph)

250

251 // Calculate the rolling mean of back EMF values
252 UMotorBackEMFValue_RollingMean = rollingMeanGeneric(

UMotorBackEMF_Mean, &UMotorBackEMFValue_LastReadValue,
&UMotorBackEMF_Index, &UMotorBackEMF_TotalVectorValue,
SAMPLE_NBR_BACKEMF_BIT);

253

254 // Update the timestamp of the last back EMF reading
255 backEMFTime = millis();
256 }
257 }
258

259 // Computes the rolling mean of the motor voltage readings
after the output of the filter and differential
amplifier.

260 void UMotorFilterOutput_RollingMean()
261 {
262 // Read the latest voltage value from the differential

amplifier output
263 UMotorFilterOutput_LastReadValue = analogRead(

PIN_DIFFAMP_OUTPUT);
264

265 // Calculate the rolling mean using a generic function
266 UMotorFilterOutputValue_RollingMean = rollingMeanGeneric(

UMotorFilterOutput_8Samples_Mean, &
UMotorFilterOutput_LastReadValue, &
UMotorFilterOutput_8Samples_Index, &
UMotorFilterOutput_8Samples_TotalVectorValue,
SAMPLE_NBR_8_OUTPUT_BIT);

267

268 // Write the calculated rolling mean to the DAC output pin
269 //
270 analogWrite(PIN_ARDUINO_DAC_OUT,

UMotorFilterOutputValue_RollingMean);
271 }
272

273 // Function to calculate the weighted average of two values
274 int weightedAverage(int lastValue, int newValue, double

weightLast, double weightNew)
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275 {
276 // Calculate the weighted average
277 int result = (lastValue * weightLast + newValue *

weightNew) / (weightLast + weightNew);
278 return result;
279 }
280

281

282 // Function to determine the current state based upon Back
EMF

283 int getBackEMFState(int backEMFValue)
284 {
285 if (backEMFValue > 2090)
286 return VERY_HIGH_BACK_EMF;
287 else if ((2090 >= backEMFValue) && (backEMFValue > 1285))
288 return HIGH_BACK_EMF;
289 else if ((1285 >= backEMFValue) && (backEMFValue >= 640))
290 return MEDIUM_BACK_EMF;
291 else if ((640 > backEMFValue) && (backEMFValue >= 400))
292 return LOW_BACK_EMF;
293 else
294 return VERY_LOW_BACK_EMF;
295 }
296

297 void adjustableEchoRejectionStateMachine()
298 {
299 unsigned long timeDifference = millis() -

echoRejectionTime;
300 if (timeDifference >= 50)
301 {
302 // Determine the current state
303 int currentState = getBackEMFState(

UMotorBackEMFValue_RollingMean);
304 int maxEchoRejectionMicros=0, minEchoRejectionMicros=0,

minValueFromBackEMF=0, maxValueFromBackEMF=0;
305

306 // Use a switch-case to handle different states
307 switch (currentState)
308 {
309 case VERY_HIGH_BACK_EMF:
310 maxEchoRejectionMicros = 2400;
311 minEchoRejectionMicros = 1800;
312 minValueFromBackEMF = 2090;
313 maxValueFromBackEMF = 3200;
314 break;
315 case HIGH_BACK_EMF:
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316 maxEchoRejectionMicros = 3250;
317 minEchoRejectionMicros = 2400;
318 minValueFromBackEMF = 1285;
319 maxValueFromBackEMF = 2090;
320 break;
321 case MEDIUM_BACK_EMF:
322 maxEchoRejectionMicros = 7500;
323 minEchoRejectionMicros = 3250;
324 minValueFromBackEMF = 640;
325 maxValueFromBackEMF = 1285;
326 break;
327 case LOW_BACK_EMF:
328 maxEchoRejectionMicros = 17500;
329 minEchoRejectionMicros = 7500;
330 minValueFromBackEMF = 400;
331 maxValueFromBackEMF = 640;
332 break;
333 case VERY_LOW_BACK_EMF:
334 maxEchoRejectionMicros = 75000;
335 minEchoRejectionMicros = 17500;
336 minValueFromBackEMF = 0;
337 maxValueFromBackEMF = 400;
338 break;
339 }
340 // The map function uses linear interpolation to find

corresponding echoRejection time according the back EMF
speed

341 echoRejection_CurrentReadValue = map(
UMotorBackEMFValue_RollingMean, minValueFromBackEMF,
maxValueFromBackEMF, maxEchoRejectionMicros,
minEchoRejectionMicros);

342 // To smoothen the echoRejection delay an weighted mean
with focus on the old value is used.

343 echoRejectionDelay = weightedAverage(
echoRejection_LastReadValue,
echoRejection_CurrentReadValue, weightLast, weightNew);

344 echoRejection_LastReadValue =
echoRejection_CurrentReadValue;

345 echoRejectionTime = millis();
346 }
347 }

Listing 7.2 Arduino class ComparatorRefHandler used for the reference signal to the
comparator and voltage ripple counting
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